Manufaktur industri
Industri Internet of Things | bahan industri | Pemeliharaan dan Perbaikan Peralatan | Pemrograman industri |
home  MfgRobots >> Manufaktur industri >  >> Manufacturing Technology >> Proses manufaktur

Jam Berbasis RTC

Komponen dan persediaan

Arduino Nano R3
× 1
Jam Waktu Nyata (RTC)
Saya menggunakan modul RTC berdasarkan ds1307. Membuat pekerjaan jauh lebih mudah. Tapi Anda bisa membuatnya sendiri dengan sangat mudah.
× 1
Tampilan led tujuh segmen 4 digit
× 1
baris tunggal header wanita
× 3
papan berlubang
dapatkan ini jika Anda ingin menyolder proyek ini dan membuatnya rapi. Untuk memudahkan penyolderan, dapatkan papan solder yang memiliki bekas seperti papan roti.
× 1
Kabel jumper (generik)
× 25
Header Pria 40 Posisi 1 Baris (0,1")
× 1

Alat dan mesin yang diperlukan

Besi solder (generik)
multimeter
Setiap proyek membutuhkan multimeter. Jadi berinvestasilah pada sepasang standar, itu akan berfungsi setidaknya selama 4 tahun dan mungkin lebih banyak lagi jika Anda tahu cara memperbaikinya. Anda akan memerlukan ini untuk memeriksa konektivitas penyolderan Anda dan untuk memeriksa arus yang ditarik oleh sirkuit.

Aplikasi dan layanan online

Arduino IDE
Arduino Fritzing

Tentang proyek ini

Ini adalah jam digital yang sangat sederhana dan mudah dirakit yang dibuat menggunakan IC RTC DS1307. Dengan layar LCD. Ini hanya menampilkan waktu pada tampilan tujuh segmen 4 digit. Kode juga dapat dengan mudah diubah untuk memberikan fungsionalitas tambahan seperti alarm, yang Anda butuhkan hanyalah sedikit imajinasi dan kecerdikan. Proyek ini dibuat hanya sebagai batu loncatan untuk hal-hal yang lebih baik dan lebih rumit, ditambah lagi saya ingin membuat sesuatu yang keren untuk dipajang di kamar saya.

Jadi cukup dikatakan, saya akan memasukkan setiap detail kecil dalam posting ini termasuk masalah yang saya hadapi saat menyoldernya ke PCB dan bagaimana saya menyelesaikan masalah tersebut.

LANGKAH 1:Komponen

Modul RTC

Chip DS1307 benar-benar mengagumkan karena memiliki kemampuan untuk melacak waktu bahkan selama waktu mati. Mudah untuk berinteraksi dengan Arduino dan ada banyak perpustakaan yang tersedia untuk bekerja dengan modul ini. RTC berinteraksi dengan Arduino melalui protokol I2C. Tidak perlu khawatir tentang detail protokol, Pin A4 dan A5 pada Arduino nano digunakan untuk komunikasi I2C.

  • SDA - A4
  • SCL - A5 

Kami tidak akan membutuhkan pin DS untuk proyek ini.

Satu-satunya downside adalah bahwa itu tidak seakurat yang kita inginkan. Chip sangat rentan terhadap penyimpangan waktu dan sangat mudah menyimpang dari waktu sebenarnya tergantung pada suhu.

CATATAN- Pastikan Anda menghubungkan pin GND dan Vcc dengan benar. Vcc ditempatkan (dalam modul) sebelum pin GND. Saya menghubungkan milik saya dalam polaritas terbalik beberapa kali dan menjadi sangat panas dengan sangat cepat. Jadi, jika Anda berbeda dalam menghubungkan polaritas secara terbalik, cukup sentuh sel koin saat AKTIF dan matikan dengan cepat jika Anda merasakannya menjadi panas.

Daftar Shift (74HC595)

  • Shift register 74HC595 adalah chip yang memungkinkan berkat teknik multiplexing. Pemula jangan takut dengan istilah yang tampak menakutkan ini karena ini menyenangkan dan Anda akan senang telah mempelajarinya.
  • 595 memiliki 16 pin dan kami akan menggunakan dua register geser untuk berinteraksi dengan tampilan 4 digit 7 segmen.
  • Shift register pertama digunakan untuk menerangi segmen dan shift register kedua digunakan untuk memilih digit I yang akan dinyalakan.
  • Berkat teknik multiplexing, peralihan antar digit dilakukan dengan sangat cepat. Sepertinya semua digit ditampilkan secara bersamaan.

CATATAN:Chip ini cukup andal tetapi kebetulan saya mendapatkan beberapa chip yang rusak. Di beberapa chip, Q0 dan Q1 tidak berfungsi. Beberapa memiliki Q3 yang di-ground secara internal (kesalahan konstruksi). Yang saya miliki di proyek saya sekarang juga tidak sepenuhnya sempurna. Salah satunya memiliki Q7 yang rusak, jadi ketika saya bekerja dengan mereka, saya harus memastikan koneksi saya tepat, dan ketika mereka masih tidak berfungsi, saya telah memeriksa pin menggunakan fungsi kontinuitas multimeter saya. Secara keseluruhan saya tidak mengeluh, karena itu semua berarti belajar mengatasi rintangan kecil saat mengerjakan sebuah proyek.

4 Digit tampilan tujuh segmen

Saya telah menggunakan segmen 4 digit generik (Common Anode ). Ini memiliki 12 pin penomoran dimulai dari kiri bawah dan berakhir di pin kiri atas. Setiap segmen mampu menampilkan angka dan titik desimal. Jadi karena saya tidak memiliki titik dua yang tampak keren seperti jam digital, saya harus puas dengan titik desimal dari digit kedua. Ini adalah tampilan yang bagus ketika tujuan utama Anda adalah menampilkan angka.

CATATAN:Ini bisa sangat sulit untuk dikerjakan oleh pemula, karena segmen a-g tidak berada di baris yang sama. Hati-hati dan jangan menghubungkannya dengan suplai 5v tanpa resistor pembatas arus.

Saya telah menyertakan skema untuk ini dan cukup jelas.

Skema tidak memiliki jenis tampilan yang sama seperti yang saya gunakan dalam proyek, jadi inilah koneksi pin dari register geser ke segmen.

Segmen          Nomor pin. pada tampilan           Shift register pin

A                                     11                                           15

B                                     7                                             1

C                                     4                                            2

D                                     2                                            3

E                                      1                                            4

F                                     10                                           5

G                                     5                                            6

Desimal                         3                                              7

H1                                   12                                          15(2nd 595)

H2                                   9                                           1(2nd 595)

H3                                   8                                           2(2nd 595)

D4                                  6                                          3(2nd 595)

Proyek ini murah dan mudah dibuat tetapi membutuhkan sedikit kesabaran dan ketekunan (yaitu jika Anda bersedia bekerja lebih keras untuk menyoldernya di PCB). Jika Anda hanya ingin mencobanya untuk bersenang-senang, hampir tidak membutuhkan waktu 2 jam.

Tolong beri tanggapan Anda tentang bagaimana saya dapat meningkatkan ini dan Jika ada sesuatu yang belum disebutkan dengan jelas di pos.

Kode

  • Kode Jam
  • Setel waktu
  • RealTimeClockDS1307.cpp
  • Baca saya
  • RealTimeClockDS1307.h
  • file lain
  • File RTClib
  • library.properties(nama)
  • RTClib
  • RTClib
  • BACA.md
  • RTClib.cpp
  • RTClib.h
Kode Jam Arduino
Kode menggunakan perpustakaan RTC dan perpustakaan I2C. Anda memerlukan pustaka ini agar program dapat dijalankan. Program ini untuk tampilan tipe Common Anode.
#include #include#include RTC_DS1307 RTC;int temp, inc, hours1, minut, add =11;int HOUR, MINUT, SECOND;int latchPin =3; //pin 12 pada 595 o3 3int dataPin =4; //pin 14 pada 595 atau 4int clockPin =2; //pin 11 pada shift 595 atau 2int =256;int unit, puluhan, ratusan, ribuan;int x;int y;const int alarmHour =17;const int alarmMinute =26;void setup() { Serial.begin(9600) ); pinMode(latchPin, OUTPUT); pinMode(dataPin, OUTPUT); pinMode(pin jam, OUTPUT); pinMode(13, OUTPUT); Kawat.mulai(); RTC.mulai(); if (!RTC.isrunning()) { RTC.adjust(DateTime(__DATE__, __TIME__)); }}void loop() { int temp =0, val =1, temp4; DateTime sekarang =RTC.now(); JAM =sekarang.jam(); MENIT =sekarang.menit(); //Serial.println(MINUT); if (JAM <10) { ratusan =JAM; ribuan =JAM/10; } else if (JAM>=10 &&JAM <24) { ratusan =JAM % 10; ribuan =JAM / 10; } if (MENIT <=9) { satuan =MENIT; puluhan =MINUT/10; } else if (MENIT> 9 &&MENIT <=60) { unit =MENIT % 10; puluhan =MENIT / 10; } switch (unit) { case 0://0 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 192 ); digitalWrite(latchPin, TINGGI); merusak; kasus 1:///1 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 249); digitalWrite(latchPin, TINGGI); merusak; kasus 2://2 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 164); digitalWrite(latchPin, TINGGI); merusak; kasus 3:///3 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 176); digitalWrite(latchPin, TINGGI); merusak; kasus 4://4 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 153); digitalWrite(latchPin, TINGGI); merusak; kasus 5:///5 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 146); digitalWrite(latchPin, TINGGI); merusak; kasus 6:///6 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 130); digitalWrite(latchPin, TINGGI); merusak; kasus 7:///7 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 248); digitalWrite(latchPin, TINGGI); merusak; kasus 8://8 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 128); digitalWrite(latchPin, TINGGI); merusak; kasus 9:///9 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 144); digitalWrite(latchPin, TINGGI); merusak; } penundaan(1); switch (puluhan) { case 0://0 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4 + 192 ); digitalWrite(latchPin, TINGGI); merusak; kasus 1:///1 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4 + 249); digitalWrite(latchPin, TINGGI); merusak; kasus 2://2 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4 + 164); digitalWrite(latchPin, TINGGI); merusak; kasus 3:///3 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4 + 176); digitalWrite(latchPin, TINGGI); merusak; kasus 4://4 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4 + 153); digitalWrite(latchPin, TINGGI); merusak; kasus 5:///5 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4 + 146); digitalWrite(latchPin, TINGGI); merusak; } penundaan(1); switch (ratusan) { case 0://0 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 64 ); digitalWrite(latchPin, TINGGI); merusak; kasus 1:///1 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 121); digitalWrite(latchPin, TINGGI); merusak; kasus 2://2 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 36); digitalWrite(latchPin, TINGGI); merusak; kasus 3:///3 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 48); digitalWrite(latchPin, TINGGI); merusak; kasus 4://4 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 25); digitalWrite(latchPin, TINGGI); merusak; kasus 5:///5 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 18); digitalWrite(latchPin, TINGGI); merusak; kasus 6:///6 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 2); digitalWrite(latchPin, TINGGI); merusak; kasus 7:///7 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 120); digitalWrite(latchPin, TINGGI); merusak; kasus 8://8 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 0); digitalWrite(latchPin, TINGGI); merusak; kasus 9:///9 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 16); digitalWrite(latchPin, TINGGI); merusak; } penundaan(1); switch (ribuan) { case 0://0 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 192 ); digitalWrite(latchPin, TINGGI); //tunda(500); merusak; kasus 1:///1 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 249); digitalWrite(latchPin, TINGGI); //tunda(500); merusak; kasus 2://2 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 164); digitalWrite(latchPin, TINGGI); //tunda(500); merusak; kasus 3:///3 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 176); digitalWrite(latchPin, TINGGI); //tunda(500); merusak; kasus 4://4 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 153); digitalWrite(latchPin, TINGGI); //tunda(500); merusak; kasus 5:///5 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 146); digitalWrite(latchPin, TINGGI); //tunda(500); merusak; kasus 6:///6 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 130); digitalWrite(latchPin, TINGGI); //tunda(500); merusak; kasus 7:///7 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 248); digitalWrite(latchPin, TINGGI); //tunda(500); merusak; kasus 8://8 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 128); digitalWrite(latchPin, TINGGI); merusak; kasus 9:///9 digitalWrite(latchPin, RENDAH); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 152); digitalWrite(latchPin, TINGGI); merusak; } penundaan(1); //bagian alarm if (JAM ==jam alarm &&MENIT ==alarmMenit) { digitalWrite(13, HIGH); } else { digitalWrite(13, RENDAH); }}
Setel waktuArduino
karena ds1307 rentan untuk menyimpang dari waktu yang tepat. Program ini memungkinkan Anda untuk mengatur waktu melalui Serial Monitor. Ketika Anda melihat waktunya tidak tepat, cukup pasang modul rtc ke arduino dan unggah program ini. Kemudian masuk ke Serial Monitor dan kemudian atur tanggal, bulan, tahun, waktu yang benar. Kemudian cukup unggah program lain dan waktu yang tepat akan ditampilkan pada tampilan 7 segmen.
/* RealTimeClockDS1307 - perpustakaan untuk mengontrol modul DS1307 RTC Hak Cipta (c) 2011 David H. Brown. Semua hak dilindungi undang-undang Banyak terima kasih kepada John Waters dan Maurice Ribble untuk pekerjaan mereka sebelumnya dan sangat membantu (bahkan jika saya tidak menggunakan kode mereka):- http://combustory.com/wiki/index.php/RTC1307_ -_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 Perpustakaan ini adalah perangkat lunak gratis; Anda dapat mendistribusikan ulang dan/atau memodifikasinya di bawah ketentuan Lisensi Publik Umum GNU yang diterbitkan oleh Free Software Foundation; baik versi 2.1 dari Lisensi, atau (sesuai pilihan Anda) versi yang lebih baru. Pustaka ini disebarluaskan dengan harapan dapat bermanfaat, namun TANPA JAMINAN APAPUN; bahkan tanpa jaminan tersirat tentang KELAYAKAN DIPERDAGANGKAN atau KESESUAIAN UNTUK TUJUAN TERTENTU. Lihat Lisensi Publik Umum GNU untuk lebih jelasnya. Anda seharusnya telah menerima salinan dari GNU Lesser General Public License bersama dengan perpustakaan ini; jika tidak, kirim surat ke Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/#include #include //RealTimeClock RTC;// =new RealTimeClock();#define Display_Clock_Every_N_Seconds 1#define Display_ShortHelp_Every_N_Seconds 25//#define TEST_Squarewave//#define TEST_StopStart//#define TEST_1224Switchint count=0;char diformat[] 0 ="00:00x-00 ="00:00x-00;void setup() {// Wire.begin(); Serial.begin(9600);} void loop() { if(Serial.available()) { processCommand(); } penundaan(1000); RTC.readClock(); menghitung++; if(hitung % Display_Clock_Every_N_Seconds ==0){ Serial.print(hitung); Serial.print(":"); RTC.getFormatted(diformat); Serial.print(diformat); Serial.println(); } if(hitung % Display_ShortHelp_Every_N_Seconds ==0) { Serial.println("Kirim ? untuk daftar perintah."); }#ifdef TEST_Squarewaveif(count%10 ==0){ switch(count/10 % 6) { case 0:Serial.print("Squarewave dinonaktifkan (impedansi rendah):"); RTC.sqwDisable(0); Serial.println((int) RTC.readData(7)); merusak; case 1:Serial.print("Squarewave dinonaktifkan (impedansi tinggi):"); RTC.sqwDisable(1); Serial.println((int) RTC.readData(7)); merusak; case 2:Serial.println("Squarewave diaktifkan pada 1 Hz"); RTC.sqwEnable(RTC.SQW_1Hz); merusak; case 3:Serial.println("Squarewave diaktifkan pada 4.096 kHz"); RTC.sqwEnable(RTC.SQW_4kHz); merusak; case 4:Serial.println("Squarewave diaktifkan pada 8.192 kHz"); RTC.sqwEnable(RTC.SQW_8kHz); merusak; case 5:Serial.println("Squarewave diaktifkan pada 32,768 kHz"); RTC.sqwEnable(RTC.SQW_32kHz); merusak; default:Serial.println("Uji gelombang persegi tidak ditentukan"); }//switch}#endif#ifdef TEST_StopStartif(count%10 ==0){ if(!RTC.isStopped()) { if(RTC.getSeconds() <45) { Serial.println("Menghentikan jam selama 10 detik "); RTC.stop(); }//jika kita punya cukup waktu } else { RTC.setSeconds(RTC.getSeconds()+11); RTC.mulai(); Serial.println("Menambahkan 11 detik dan memulai ulang jam"); }}//if pada kelipatan 10 hitungan#endif#ifdef TEST_1224Switch if(count%10 ==0) { if(count %20 ==0) { Serial.println("beralih ke waktu 12 jam"); RTC.switchTo12h(); RTC.setClock(); } else { Serial.println("beralih ke waktu 24 jam"); RTC.switchTo24h(); RTC.setClock(); } }#endif}void processCommand() { if(!Serial.available()) { kembali; } perintah char =Serial.read(); int di, di2; switch(perintah) { case 'H':case 'h':in=SerialReadPosInt(); RTC.setJam(dalam); RTC.setClock(); Serial.print("Setel jam ke "); Serial.println(dalam); merusak; case 'I':case 'i':in=SerialReadPosInt(); RTC.setMenit(dalam); RTC.setClock(); Serial.print("Mengatur menit ke "); Serial.println(dalam); merusak; case 'S':case 's':in=SerialReadPosInt(); RTC.setSeconds(dalam); RTC.setClock(); Serial.print("Mengatur detik ke "); Serial.println(dalam); merusak; kasus 'Y':kasus 'y':in=SerialReadPosInt(); RTC.setTahun(dalam); RTC.setClock(); Serial.print("Mengatur tahun ke "); Serial.println(dalam); merusak; case 'M':case 'm':in=SerialReadPosInt(); RTC.setBulan(dalam); RTC.setClock(); Serial.print("Setel bulan ke "); Serial.println(dalam); merusak; kasus 'D':kasus 'd':in=SerialReadPosInt(); RTC.setDate(dalam); RTC.setClock(); Serial.print("Setel tanggal ke "); Serial.println(dalam); merusak; case 'W':Serial.print("Hari dalam seminggu adalah "); Serial.println((int) RTC.getDayOfWeek()); merusak; case 'w':in=SerialReadPosInt(); RTC.setHariDariMinggu(dalam); RTC.setClock(); Serial.print("Mengatur hari dalam seminggu ke "); Serial.println(dalam); merusak; case 't':case 'T':if(RTC.is12hour()) { RTC.switchTo24h(); Serial.println("Beralih ke jam 24 jam."); } else { RTC.switchTo12h(); Serial.println("Beralih ke jam 12-jam."); } RTC.setClock(); merusak; kasus 'A':kasus 'a':if(RTC.is12hour()) { RTC.setAM(); RTC.setClock(); Serial.println("Atur AM."); } else { Serial.println("(Setel jam hanya dalam mode 24 jam.)"); } merusak; case 'P':case 'p':if(RTC.is12hour()) { RTC.setPM(); RTC.setClock(); Serial.println("Setel PM."); } else { Serial.println("(Setel jam hanya dalam mode 24 jam.)"); } merusak; huruf 'q':RTC.sqwEnable(RTC.SQW_1Hz); Serial.println("Output gelombang persegi disetel ke 1Hz"); merusak; kasus 'Q':RTC.sqwDisable(0); Serial.println("Output gelombang persegi dinonaktifkan (rendah)"); merusak; huruf 'z':RTC.start(); Serial.println("Osilator jam dimulai."); merusak; kasus 'Z':RTC.stop(); Serial.println("Osilator jam berhenti."); merusak; kasus '>':in=SerialReadPosInt(); in2=SerialReadPosInt(); RTC.writeData(dalam, dalam2); Serial.print("Tulis untuk mendaftar"); Serial.print(dalam); Serial.print("nilai"); Serial.println(dalam2); merusak; kasus '<':in=SerialReadPosInt(); in2=RTC.readData(dalam); Serial.print("Baca dari register"); Serial.print(dalam); Serial.print("nilai"); Serial.println(dalam2); merusak; default:Serial.println("Perintah tidak diketahui. Coba ini:"); Serial.println("h## - atur Jam d## - atur Tanggal"); Serial.println(" i## - set mInutes m## - set Bulan"); Serial.println(" s## - set Detik y## - set Tahun"); Serial.println("w## - mengatur hari sewenang-wenang dalam seminggu"); Serial.println("t - beralih mode 24 jam"); Serial.println("a - set AM p - set PM"); Serial.println(); Serial.println("z - mulai jam Z - hentikan jam"); Serial.println("q - SQW/OUT =1Hz Q - hentikan SQW/OUT"); Serial.println(); Serial.println(">##,### - tulis untuk mendaftarkan ## nilai ###"); Serial.println(" <## - baca nilai pada register ##"); }//mengaktifkan perintah }//membaca dalam karakter numerik sampai sesuatu yang lain//atau tidak ada lagi data yang tersedia di serial.int SerialReadPosInt() { int i =0; boolean selesai=salah; while(Serial.available() &&!done) { char c =Serial.read(); if (c>='0' &&c <='9') { i =i * 10 + (c-'0'); } else { selesai =benar; } } kembalikan i;}
RealTimeClockDS1307.cppC/C++
Ini adalah salah satu file perpustakaan dari jam waktu nyata. Buat folder bernama "RealTimeClockDS1307" dan salin ini ke folder ini. Itu saja yang harus Anda lakukan. Tidak perlu dikompilasi.
/* RealTimeClockDS1307 - library untuk mengontrol modul DS1307 RTC Hak Cipta (c) 2011 David H. Brown. Semua hak dilindungi undang-undang v0.92 Diperbarui untuk Arduino 1.00; tidak diuji ulang pada versi sebelumnya Banyak terima kasih kepada John Waters dan Maurice Ribble untuk pekerjaan mereka sebelumnya dan sangat membantu (bahkan jika saya tidak menggunakan kode mereka):- http://combustory.com/wiki/index .php/RTC1307_-_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 Pustaka ini adalah perangkat lunak gratis; Anda dapat mendistribusikan ulang dan/atau memodifikasinya di bawah ketentuan Lisensi Publik Umum GNU yang diterbitkan oleh Free Software Foundation; baik versi 2.1 dari Lisensi, atau (sesuai pilihan Anda) versi yang lebih baru. Pustaka ini disebarluaskan dengan harapan dapat bermanfaat, namun TANPA JAMINAN APAPUN; bahkan tanpa jaminan tersirat tentang KELAYAKAN DIPERDAGANGKAN atau KESESUAIAN UNTUK TUJUAN TERTENTU. Lihat Lisensi Publik Umum GNU untuk lebih jelasnya. Anda seharusnya telah menerima salinan dari GNU Lesser General Public License bersama dengan perpustakaan ini; jika tidak, kirim surat ke Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/ /****************** ************************************************** ******** * Termasuk ************************************* **************************************/#include "RealTimeClockDS1307.h"#include /********************************************** ******************************** * Definisi **************** ************************************************** ************/#define DS1307_I2C_ADDRESS 0x68 // Ini adalah alamat I2C/************************* ************************************************** *** * Konstruktor ********************************************* *********************************/RealTimeClockDS1307::RealTimeClockDS1307(){ Wire.begin(); //TIDAK harus mencoba membaca jam sebelum //Wire.begin() belum dipanggil; readClock() akan hang. //Untungnya, tampaknya Anda dapat memanggil Wire.begin() //berkali-kali tanpa efek samping).} /********************* ************************************************** ***** * API Pengguna ****************************************** ***********************************//****** CHIP BACA/TULIS *** ***/void RealTimeClockDS1307::readClock(){ // Reset pointer register Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write((uint8_t) 0x00); Kawat.endTransmisi(); Wire.requestFrom(DS1307_I2C_ADDRESS, 8); _reg0_sec =Wire.read(); _reg1_min =Wire.read(); _reg2_hour =Wire.read(); _reg3_day =Wire.read(); _reg4_date =Wire.read(); _reg5_month =Wire.read(); _reg6_year =Wire.read(); _reg7_sqw =Wire.read();}void RealTimeClockDS1307::setClock(){ //untuk menjadi paranoid, pertama-tama kita akan menghentikan jam //untuk memastikan kita tidak mengalami rollover saat //menulis:writeData(0,0x80); //sekarang, kita akan menulis semuanya *kecuali* Wire.beginTransmission kedua(DS1307_I2C_ADDRESS); Wire.write((uint8_t) 0x01); Wire.write(_reg1_min); Wire.write(_reg2_hour); Wire.write(_reg3_day); Wire.write(_reg4_date); Wire.write(_reg5_month); Wire.write(_reg6_year); Kawat.endTransmisi(); //sekarang, kita akan menulis detik; kita tidak perlu menjaga //melacak apakah jam sudah berjalan, karena //_reg0_sec sudah tahu apa yang kita inginkan. Ini //akan memulai ulang jam saat ia menulis nilai detik baru. writeData(0,_reg0_sec); }void RealTimeClockDS1307::stop(){ //"Bit 7 dari register 0 adalah bit clock halt (CH). //Ketika bit ini disetel ke 1, osilator dinonaktifkan." _reg0_sec =_reg0_sec | 0x80; writeData(0,_reg0_sec);}void RealTimeClockDS1307::start(){ //"Bit 7 dari register 0 adalah bit clock halt (CH). //Ketika bit ini disetel ke 1, osilator dinonaktifkan." _reg0_sec =_reg0_sec &~0x80; writeData(0,_reg0_sec);}void RealTimeClockDS1307::writeData(byte regNo, byte value){ if(regNo> 0x3F) { return; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Kawat.tulis(nilai); Wire.endTransmission();}void RealTimeClockDS1307::writeData(byte regNo, void * source, int length){ char * p =(char*) source; if(regNo> 0x3F || panjang> 0x3F) { kembali; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); for(int i=0; i 0x3F) { return 0xff; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Kawat.endTransmisi(); Wire.requestFrom(DS1307_I2C_ADDRESS, 1); return Wire.read();}void RealTimeClockDS1307::readData(byte regNo, void * dest, int length){ char * p =(char*) dest; if(regNo> 0x3F || panjang> 0x3F) { kembali; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Kawat.endTransmisi(); Wire.requestFrom(DS1307_I2C_ADDRESS, panjang); for(int i=0; i 3) { kembali; } //bit 4 diaktifkan (0x10); //bit 7 adalah status keluaran saat ini jika dinonaktifkan _reg7_sqw =_reg7_sqw &0x80 | 0x10 | frekuensi; writeData(0x07, _reg7_sqw);}void RealTimeClockDS1307::sqwDisable(boolean outputLevel){ //bit 7 0x80 output + bit 4 0x10 aktifkan keduanya ke nol, //OR dengan boolean digeser ke bit 7 _reg7_sqw =_reg7_sqw &~ 0x90 | (tingkat keluaran <<7); writeData(0x07, _reg7_sqw); //catatan:per lembar data, "OUT (Output control):Bit ini mengontrol //level output pin SQW/OUT ketika gelombang persegi //output dinonaktifkan. Jika SQWE =0, level logika pada //SQW/OUT pin adalah 1 jika OUT =1 dan 0 jika OUT =0." //"Pin SQW/OUT terbuka dan membutuhkan resistor //pull-up eksternal." //Perlu disebutkan bahwa pada papan breakout Sparkfun, //BOB-00099, LED terhubung ke pin SQW melalui resistor ke //Vcc+5V menyala saat OUT=0 dan gelap saat OUT=1, / / kebalikan dari apa yang saya harapkan sampai saya ingat bahwa itu adalah // saluran terbuka (google jika perlu). Pada dasarnya, mereka tidak //begitu berarti level logika (mis., +3.3V rel Gnd) seperti yang mereka maksudkan //tinggi atau rendah *impedansi* ke ground (drain). Jadi Tinggi pada dasarnya adalah //sebuah saklar terbuka. Low terhubung ke ground.}/****** GETTERS ******/boolean RealTimeClockDS1307::is12hour() { //12-hour mode memiliki bit 6 jam register set high return ((_reg2_hour &0x40) ==0x40);}boolean RealTimeClockDS1307::isPM(){ //jika dalam mode 12-jam, tetapi register 5 jam menunjukkan PM if(is12hour()) { return ((_reg2_hour &0x20) ==0x20); } //jika tidak, mari kita pertimbangkan setiap saat dengan jam>11 menjadi PM:return (getHours()> 11);}boolean RealTimeClockDS1307::isStopped(){ //bit 7 detik register menghentikan jam saat high return ((_reg0_sec &0x80) ==0x80);}int RealTimeClockDS1307::getHours(){ if(is12hour()) { //jangan sertakan bit 5, indikator am/pm mengembalikan bcdToDec(_reg2_hour &0x1f); } //bit 4-5 adalah puluhan jam kembali bcdToDec(_reg2_hour &0x3f);}int RealTimeClockDS1307::getMinutes(){ //bisa menutupi dengan 0x7f tetapi tidak perlu mengembalikan bcdToDec(_reg1_min);}int RealTimeClockDS1307::getSeconds(){ //perlu menutupi osilator start/stop bit 7 return bcdToDec(_reg0_sec &0x7f);}int RealTimeClockDS1307::getYear(){ return bcdToDec(_reg6_year);}int RealTimeClockDS1307::getMonth(){ // bisa menutupi dengan 0x1f tetapi tidak perlu mengembalikan bcdToDec(_reg5_month);}int RealTimeClockDS1307::getDate(){ //bisa menutupi dengan 0x3f tetapi tidak perlu mengembalikan bcdToDec(_reg4_date);}int RealTimeClockDS1307::getDay( ){ return getDate();}int RealTimeClockDS1307::getDayOfWeek(){ //bisa menutupi dengan 0x07 tetapi tidak perlu mengembalikan bcdToDec(_reg3_day);}void RealTimeClockDS1307::getFormatted(char * buffer){ int i=0; //format string target:YY-MM-DD HH:II:SS buffer[i++]=highNybbleToASCII(_reg6_year); buffer[i++]=lowNybbleToASCII(_reg6_year); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg5_month &0x1f); buffer[i++]=lowNybbleToASCII(_reg5_month); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg4_date &0x3f); buffer[i++]=lowNybbleToASCII(_reg4_date); penyangga[i++]=' '; if(is12hour()) { buffer[i++]=highNybbleToASCII(_reg2_hour &0x1f); } else { buffer[i++]=highNybbleToASCII(_reg2_hour &0x3f); } buffer[i++]=lowNybbleToASCII(_reg2_hour); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg1_min &0x7f); buffer[i++]=lowNybbleToASCII(_reg1_min); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg0_sec &0x7f); buffer[i++]=lowNybbleToASCII(_reg0_sec); if(is12hour()) { if(isPM()) { buffer[i++]='P'; } else { buffer[i++]='A'; } } buffer[i++]=0x00;}void RealTimeClockDS1307::getFormatted2k(char * buffer){ buffer[0]='2'; buffer[1]='0'; getFormatted(&buffer[2]);}/**** SETTERS *****/void RealTimeClockDS1307::setSeconds(int s){ if (s <60 &&s>=0) { //need to preserve oscillator bit _reg0_sec =decToBcd(s) | (_reg0_sec &0x80); }}void RealTimeClockDS1307::setMinutes(int m){ if (m <60 &&m>=0) { _reg1_min =decToBcd(m); }}void RealTimeClockDS1307::setHours(int h){ if (is12hour()) { if (h>=1 &&h <=12) { //preserve 12/24 and AM/PM bits _reg2_hour =decToBcd(h) | (_reg2_hour &0x60); } } else { if (h>=0 &&h <=24) { //preserve 12/24 bit _reg2_hour =decToBcd(h) | (_reg2_hour &0x40); } }//else}//setHoursvoid RealTimeClockDS1307::set24h(){ //"Bit 6 of the hours register is defined as the //"12- or 24-hour mode select bit. //"When high, the 12-hour mode is selected" //So, mask the curent value with the complement turn off that bit:_reg2_hour =_reg2_hour &~0x40; }void RealTimeClockDS1307::setAM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 to set 12-hour mode and also //turn off the PM bit by masking with the complement _reg2_hour =_reg2_hour &~0x20 | 0x40;}void RealTimeClockDS1307::setPM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 and 0x20 to set 12-hour mode and also //turn on the PM bit:_reg2_hour =_reg2_hour | 0x60;}void RealTimeClockDS1307::switchTo12h(){ if(is12hour()) { return; } int h =getHours(); if (h <12) { setAM(); } else { h =h-12; setPM(); } if (h==0) { h=12; } setHours(h);}void RealTimeClockDS1307::switchTo24h(){ if(!is12hour()) { return; } int h =getHours(); if(h==12) {//12 PM is just 12; 12 AM is 0 hours. h =0; } if (isPM()) {//if it was 12 PM, then h=0 above and so we're back to 12:h =h+12; } set24h(); setHours(h);}void RealTimeClockDS1307::setDayOfWeek(int d){ if (d> 0 &&d <8) { _reg3_day =decToBcd(d); }}void RealTimeClockDS1307::setDate(int d){ if (d> 0 &&d <32) { _reg4_date =decToBcd(d); }}void RealTimeClockDS1307::setDay(int d){ setDate(d);}void RealTimeClockDS1307::setMonth(int m){ if (m> 0 &&m <13) { _reg5_month =decToBcd(m); }}void RealTimeClockDS1307::setYear(int y){ if (y>=0 &&y <100) { _reg6_year =decToBcd(y); }}/***************************************** * Private methods *****************************************/byte RealTimeClockDS1307::decToBcd(byte b){ return ( ((b/10) <<4) + (b%10) );}// Convert binary coded decimal to normal decimal numbersbyte RealTimeClockDS1307::bcdToDec(byte b){ return ( ((b>> 4)*10) + (b%16) );}char RealTimeClockDS1307::lowNybbleToASCII(byte b) { b =b &0x0f; if(b <10) { //0 is ASCII 48 return 48+b; } //A is ASCII 55 return 55+b;}char RealTimeClockDS1307::highNybbleToASCII(byte b){ return lowNybbleToASCII(b>> 4);}/***** INSTANCE *******/RealTimeClockDS1307 RTC =RealTimeClockDS1307();
ReadmeClojure
Copy this also into the same folder you created named "RealTimeClockDS1307".
My goal in creating yet another DS1307 library was to provideeasy access to some of the other functions I needed from the chip,specifically its square wave output and its battery-backed RAM.## Documentation@todo Mostly comments in `RealTimeClockDS1307.h`## Examples (in /examples folder)- `RealTimeClockDS1307_Test.pde` allow you to turn the clock on/off,set date/time, set 12/24h, [de]activate the square wave, andread/write memory from the Serial Monitor.- `RealTimeClockDS1307.fz` is a Fritzing breadboard layout showingthe basic hookup of the Sparkfun RTC module to an Arduino. Includedis an optional resistor+LED to show the square wave (note that it'san open drain, so you hook up to it rather differently than, say, pin 13).## Changelog##### Version 0.95* Reverse renaming of getDate() and setDate(), now getDay() is calling getDate() and setDay() is calling setDate()* Readme improvements##### Version 0.94* changed getDate() to getDay() and setDate() to setDay()* updated keywords.txt* updated example##### Version 0.93* added keywords.txt for syntax highlighting##### Version 0.92 RC* Updated for Arduino 1.00; testing with Andreas Giemza (hurik)##### Version 0.91* added multi-byte read/write##### Version 0.9 RC* initial release## Future - web page documentation## CreditsMuch thanks to John Waters and Maurice Ribble for theirearlier and very helpful work (even if I didn't wind upusing any of their code):- [http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock](http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock)- [http://www.glacialwanderer.com/hobbyrobotics/?p=12](http://www.glacialwanderer.com/hobbyrobotics/?p=12)## CopyrightRealTimeClockDS1307 - library to control a DS1307 RTC moduleCopyright (c) 2011 David H. Brown. All rights reserved## License This library is free software; Anda dapat mendistribusikan ulang dan/atau memodifikasinya di bawah ketentuan Lisensi Publik Umum GNU yang diterbitkan oleh Free Software Foundation; baik versi 2.1 dari Lisensi, atau (sesuai pilihan Anda) versi yang lebih baru. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
RealTimeClockDS1307.hC/C++
This is the main header file of the real time clock. Copy this also into the folder you previously created named "RealTimeClockDS1307". Now you have all the files for the Real Time Clock. Enter the arduino ide and under the 'Sketch' menu click on the 'include library' option and then search your folder under the 'Add .ZIP Library". This will do the trick and you will now be able to set the time in the RTC module.
/* RealTimeClockDS1307 - library to control a DS1307 RTC module Copyright (c) 2011 David H. Brown. All rights reserved v0.92 Updated for Arduino 1.00; not re-tested on earlier versions Much thanks to John Waters and Maurice Ribble for their earlier and very helpful work (even if I didn't wind up using any of their code):- http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/#ifndef RealTimeClockDS1307_h#define RealTimeClockDS1307_h #if defined(ARDUINO) &&ARDUINO>=100 #include "Arduino.h" #else #include "WProgram.h" #endif//#include //#include  //need/want 'boolean' and 'byte' types used by Arduino//#undef round is required to avoid a compile-time//"expected unqualified-id before 'double'" error in math.h//see:http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1247924528/3#undef round #include #define ARDUINO_PIN_T uint8_tclass RealTimeClockDS1307{ private:byte _reg0_sec; byte _reg1_min; byte _reg2_hour; byte _reg3_day; byte _reg4_date; byte _reg5_month; byte _reg6_year; byte _reg7_sqw; byte decToBcd(byte); byte bcdToDec(byte); char lowNybbleToASCII(byte); char highNybbleToASCII(byte); public:RealTimeClockDS1307(); void readClock();//read registers (incl sqw) to local store void setClock();//update clock registers from local store void stop();//immediate; does not require setClock(); void start();//immediate; does not require setClock(); void sqwEnable(byte);//enable the square wave with the specified frequency void sqwDisable(boolean);//disable the square wave, setting output either high or low void writeData(byte, byte);//write a single value to a register void writeData(byte, void *, int);//write several values consecutively byte readData(byte);//read a single value from a register void readData(byte, void *, int);//read several values into a buffer int getHours(); int getMinutes(); int getSeconds(); int getYear(); int getMonth(); int getDate(); int getDay(); int getDayOfWeek(); boolean is12hour(); boolean isPM(); boolean isStopped(); //getFormatted writes into a char array provided by you. Format is:// YY-MM-DD HH:II:SS ... plus "A" or "P" if in 12-hour mode //and of course a NULL terminator. So, [18] for 24h or [19] for 12h void getFormatted(char *);//see comment above void getFormatted2k(char *);//as getFormatted, but with "20" prepended //must also call setClock() after any of these //before next readClock(). Note that invalid dates are not //corrected by the clock. All the clock knows is when it should //roll over to the next month rather than the next date in the same month. void setSeconds(int); void setMinutes(int); //setHours rejects values out of range for the current 12/24 mode void setHours(int); void setAM();//does not consider hours; see switchTo24() void setPM();//does not consider hours; see switchTo24() void set24h();//does not consider hours; see switchTo24() void switchTo24h();//returns immediately if already 24h void switchTo12h();//returns immediately if already 12h void setDayOfWeek(int);//incremented at midnight; not set by date (no fixed meaning) void setDate(int);//allows 1-31 for *all* months. void setDay(int); void setMonth(int); void setYear(int); //squarewave frequencies:static const byte SQW_1Hz=0x00; static const byte SQW_4kHz=0x01;//actually 4.096kHz static const byte SQW_8kHz=0x02;//actually 8.192kHz static const byte SQW_32kHz=0x03;//actually 32.768kHz};extern RealTimeClockDS1307 RTC;#endif
another fileC/C++
add this to the 'RealTimeClockDS1307' folder.
########################################## Syntax Coloring Map RealTimeClockDS1307################################################################################# Instances (KEYWORD2)#######################################RTC KEYWORD2########################################## Methods and Functions (KEYWORD2)#########################################readClock KEYWORD2setClock KEYWORD2stop KEYWORD2start KEYWORD2sqwEnable KEYWORD2sqwDisable KEYWORD2writeData KEYWORD2readData KEYWORD2getHours KEYWORD2getMinutes KEYWORD2getSeconds KEYWORD2getYear KEYWORD2getMonth KEYWORD2getDate KEYWORD2getDay KEYWORD2getDayOfWeek KEYWORD2is12hour KEYWORD2isPM KEYWORD2isStopped KEYWORD2getFormatted KEYWORD2getFormatted2k KEYWORD2setSeconds KEYWORD2setMinutes KEYWORD2setHours KEYWORD2setAM KEYWORD2setPM KEYWORD2set24h KEYWORD2switchTo24h KEYWORD2switchTo12h KEYWORD2setDayOfWeek KEYWORD2setDate KEYWORD2setDay KEYWORD2setMonth KEYWORD2setYear KEYWORD2########################################## Constants (LITERAL1)#########################################SQW_1Hz LITERAL1SQW_4kHz LITERAL1SQW_8kHz LITERAL1SQW_32kHz LITERAL1
RTClib filesC#
create a folder named 'RTClib' and add the following files into it
########################################## Syntax Coloring Map RealTimeClockDS1307################################################################################# Instances (KEYWORD2)#######################################RTC KEYWORD2########################################## Methods and Functions (KEYWORD2)#########################################readClock KEYWORD2setClock KEYWORD2stop KEYWORD2start KEYWORD2sqwEnable KEYWORD2sqwDisable KEYWORD2writeData KEYWORD2readData KEYWORD2getHours KEYWORD2getMinutes KEYWORD2getSeconds KEYWORD2getYear KEYWORD2getMonth KEYWORD2getDate KEYWORD2getDay KEYWORD2getDayOfWeek KEYWORD2is12hour KEYWORD2isPM KEYWORD2isStopped KEYWORD2getFormatted KEYWORD2getFormatted2k KEYWORD2setSeconds KEYWORD2setMinutes KEYWORD2setHours KEYWORD2setAM KEYWORD2setPM KEYWORD2set24h KEYWORD2switchTo24h KEYWORD2switchTo12h KEYWORD2setDayOfWeek KEYWORD2setDate KEYWORD2setDay KEYWORD2setMonth KEYWORD2setYear KEYWORD2########################################## Constants (LITERAL1)#########################################SQW_1Hz LITERAL1SQW_4kHz LITERAL1SQW_8kHz LITERAL1SQW_32kHz LITERAL1
library.properties(name)C/C++
add this to the RTClib folder
My goal in creating yet another DS1307 library was to provideeasy access to some of the other functions I needed from the chip,specifically its square wave output and its battery-backed RAM.## Documentation@todo Mostly comments in `RealTimeClockDS1307.h`## Examples (in /examples folder)- `RealTimeClockDS1307_Test.pde` allow you to turn the clock on/off,set date/time, set 12/24h, [de]activate the square wave, andread/write memory from the Serial Monitor.- `RealTimeClockDS1307.fz` is a Fritzing breadboard layout showingthe basic hookup of the Sparkfun RTC module to an Arduino. Includedis an optional resistor+LED to show the square wave (note that it'san open drain, so you hook up to it rather differently than, say, pin 13).## Changelog##### Version 0.95* Reverse renaming of getDate() and setDate(), now getDay() is calling getDate() and setDay() is calling setDate()* Readme improvements##### Version 0.94* changed getDate() to getDay() and setDate() to setDay()* updated keywords.txt* updated example##### Version 0.93* added keywords.txt for syntax highlighting##### Version 0.92 RC* Updated for Arduino 1.00; testing with Andreas Giemza (hurik)##### Version 0.91* added multi-byte read/write##### Version 0.9 RC* initial release## Future - web page documentation## CreditsMuch thanks to John Waters and Maurice Ribble for theirearlier and very helpful work (even if I didn't wind upusing any of their code):- [http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock](http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock)- [http://www.glacialwanderer.com/hobbyrobotics/?p=12](http://www.glacialwanderer.com/hobbyrobotics/?p=12)## CopyrightRealTimeClockDS1307 - library to control a DS1307 RTC moduleCopyright (c) 2011 David H. Brown. All rights reserved## License This library is free software; Anda dapat mendistribusikan ulang dan/atau memodifikasinya di bawah ketentuan Lisensi Publik Umum GNU yang diterbitkan oleh Free Software Foundation; baik versi 2.1 dari Lisensi, atau (sesuai pilihan Anda) versi yang lebih baru. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
RTClibC/C++
add this to the RTClib folder
/* RealTimeClockDS1307 - library to control a DS1307 RTC module Copyright (c) 2011 David H. Brown. All rights reserved v0.92 Updated for Arduino 1.00; not re-tested on earlier versions Much thanks to John Waters and Maurice Ribble for their earlier and very helpful work (even if I didn't wind up using any of their code):- http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 This library is free software; Anda dapat mendistribusikan ulang dan/atau memodifikasinya di bawah ketentuan Lisensi Publik Umum GNU yang diterbitkan oleh Free Software Foundation; baik versi 2.1 dari Lisensi, atau (sesuai pilihan Anda) versi yang lebih baru. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/ /****************************************************************************** * Includes ******************************************************************************/#include "RealTimeClockDS1307.h"#include /****************************************************************************** * Definitions ******************************************************************************/#define DS1307_I2C_ADDRESS 0x68 // This is the I2C address/****************************************************************************** * Constructors ******************************************************************************/RealTimeClockDS1307::RealTimeClockDS1307(){ Wire.begin(); //must NOT attempt to read the clock before //Wire.begin() has not been called; readClock() will hang. //Fortunately, it seems that you can call Wire.begin() //multiple times with no adverse effect).} /****************************************************************************** * User API ******************************************************************************//***** CHIP READ/WRITE ******/void RealTimeClockDS1307::readClock(){ // Reset the register pointer Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write((uint8_t) 0x00); Kawat.endTransmisi(); Wire.requestFrom(DS1307_I2C_ADDRESS, 8); _reg0_sec =Wire.read(); _reg1_min =Wire.read(); _reg2_hour =Wire.read(); _reg3_day =Wire.read(); _reg4_date =Wire.read(); _reg5_month =Wire.read(); _reg6_year =Wire.read(); _reg7_sqw =Wire.read();}void RealTimeClockDS1307::setClock(){ //to be paranoid, we're going to first stop the clock //to ensure we don't have rollovers while we're //writing:writeData(0,0x80); //now, we'll write everything *except* the second Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write((uint8_t) 0x01); Wire.write(_reg1_min); Wire.write(_reg2_hour); Wire.write(_reg3_day); Wire.write(_reg4_date); Wire.write(_reg5_month); Wire.write(_reg6_year); Kawat.endTransmisi(); //now, we'll write the seconds; we didn't have to keep //track of whether the clock was already running, because //_reg0_sec already knows what we want it to be. This //will restart the clock as it writes the new seconds value. writeData(0,_reg0_sec); }void RealTimeClockDS1307::stop(){ //"Bit 7 of register 0 is the clock halt (CH) bit. //When this bit is set to a 1, the oscillator is disabled." _reg0_sec =_reg0_sec | 0x80; writeData(0,_reg0_sec);}void RealTimeClockDS1307::start(){ //"Bit 7 of register 0 is the clock halt (CH) bit. //When this bit is set to a 1, the oscillator is disabled." _reg0_sec =_reg0_sec &~0x80; writeData(0,_reg0_sec);}void RealTimeClockDS1307::writeData(byte regNo, byte value){ if(regNo> 0x3F) { return; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Wire.write(value); Wire.endTransmission();}void RealTimeClockDS1307::writeData(byte regNo, void * source, int length){ char * p =(char*) source; if(regNo> 0x3F || length> 0x3F) { return; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); for(int i=0; i 0x3F) { return 0xff; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Kawat.endTransmisi(); Wire.requestFrom(DS1307_I2C_ADDRESS, 1); return Wire.read();}void RealTimeClockDS1307::readData(byte regNo, void * dest, int length){ char * p =(char*) dest; if(regNo> 0x3F || length> 0x3F) { return; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Kawat.endTransmisi(); Wire.requestFrom(DS1307_I2C_ADDRESS, length); for(int i=0; i 3) { return; } //bit 4 is enable (0x10); //bit 7 is current output state if disabled _reg7_sqw =_reg7_sqw &0x80 | 0x10 | frequency; writeData(0x07, _reg7_sqw);}void RealTimeClockDS1307::sqwDisable(boolean outputLevel){ //bit 7 0x80 output + bit 4 0x10 enable both to zero, //the OR with the boolean shifted up to bit 7 _reg7_sqw =_reg7_sqw &~0x90 | (outputLevel <<7); writeData(0x07, _reg7_sqw); //note:per the data sheet, "OUT (Output control):This bit controls //the output level of the SQW/OUT pin when the square wave //output is disabled. If SQWE =0, the logic level on the //SQW/OUT pin is 1 if OUT =1 and is 0 if OUT =0." //"The SQW/OUT pin is open drain and requires an external //pull-up resistor." //It is worth mentioning that on the Sparkfun breakout board, //BOB-00099, a LED connected to the SQW pin through a resistor to //Vcc+5V illuminated when OUT=0 and was dark when OUT=1, the //opposite of what I expected until I remembered that it is //an open drain (google it if you need to). Basically, they don't //so much mean a logic level (e.g., +3.3V rel Gnd) as they mean //high or low *impeadance* to ground (drain). So High is basically //an open switch. Low connects to ground.}/***** GETTERS ******/boolean RealTimeClockDS1307::is12hour() { //12-hour mode has bit 6 of the hour register set high return ((_reg2_hour &0x40) ==0x40);}boolean RealTimeClockDS1307::isPM(){ //if in 12-hour mode, but 5 of the hour register indicates PM if(is12hour()) { return ((_reg2_hour &0x20) ==0x20); } //otherwise, let's consider any time with the hour>11 to be PM:return (getHours()> 11);}boolean RealTimeClockDS1307::isStopped(){ //bit 7 of the seconds register stopps the clock when high return ((_reg0_sec &0x80) ==0x80);}int RealTimeClockDS1307::getHours(){ if(is12hour()) { //do not include bit 5, the am/pm indicator return bcdToDec(_reg2_hour &0x1f); } //bits 4-5 are tens of hours return bcdToDec(_reg2_hour &0x3f);}int RealTimeClockDS1307::getMinutes(){ //could mask with 0x7f but shouldn't need to return bcdToDec(_reg1_min);}int RealTimeClockDS1307::getSeconds(){ //need to mask oscillator start/stop bit 7 return bcdToDec(_reg0_sec &0x7f);}int RealTimeClockDS1307::getYear(){ return bcdToDec(_reg6_year);}int RealTimeClockDS1307::getMonth(){ //could mask with 0x1f but shouldn't need to return bcdToDec(_reg5_month);}int RealTimeClockDS1307::getDate(){ //could mask with 0x3f but shouldn't need to return bcdToDec(_reg4_date);}int RealTimeClockDS1307::getDay(){ return getDate();}int RealTimeClockDS1307::getDayOfWeek(){ //could mask with 0x07 but shouldn't need to return bcdToDec(_reg3_day);}void RealTimeClockDS1307::getFormatted(char * buffer){ int i=0; //target string format:YY-MM-DD HH:II:SS buffer[i++]=highNybbleToASCII(_reg6_year); buffer[i++]=lowNybbleToASCII(_reg6_year); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg5_month &0x1f); buffer[i++]=lowNybbleToASCII(_reg5_month); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg4_date &0x3f); buffer[i++]=lowNybbleToASCII(_reg4_date); buffer[i++]=' '; if(is12hour()) { buffer[i++]=highNybbleToASCII(_reg2_hour &0x1f); } else { buffer[i++]=highNybbleToASCII(_reg2_hour &0x3f); } buffer[i++]=lowNybbleToASCII(_reg2_hour); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg1_min &0x7f); buffer[i++]=lowNybbleToASCII(_reg1_min); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg0_sec &0x7f); buffer[i++]=lowNybbleToASCII(_reg0_sec); if(is12hour()) { if(isPM()) { buffer[i++]='P'; } else { buffer[i++]='A'; } } buffer[i++]=0x00;}void RealTimeClockDS1307::getFormatted2k(char * buffer){ buffer[0]='2'; buffer[1]='0'; getFormatted(&buffer[2]);}/**** SETTERS *****/void RealTimeClockDS1307::setSeconds(int s){ if (s <60 &&s>=0) { //need to preserve oscillator bit _reg0_sec =decToBcd(s) | (_reg0_sec &0x80); }}void RealTimeClockDS1307::setMinutes(int m){ if (m <60 &&m>=0) { _reg1_min =decToBcd(m); }}void RealTimeClockDS1307::setHours(int h){ if (is12hour()) { if (h>=1 &&h <=12) { //preserve 12/24 and AM/PM bits _reg2_hour =decToBcd(h) | (_reg2_hour &0x60); } } else { if (h>=0 &&h <=24) { //preserve 12/24 bit _reg2_hour =decToBcd(h) | (_reg2_hour &0x40); } }//else}//setHoursvoid RealTimeClockDS1307::set24h(){ //"Bit 6 of the hours register is defined as the //"12- or 24-hour mode select bit. //"When high, the 12-hour mode is selected" //So, mask the curent value with the complement turn off that bit:_reg2_hour =_reg2_hour &~0x40; }void RealTimeClockDS1307::setAM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 to set 12-hour mode and also //turn off the PM bit by masking with the complement _reg2_hour =_reg2_hour &~0x20 | 0x40;}void RealTimeClockDS1307::setPM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 and 0x20 to set 12-hour mode and also //turn on the PM bit:_reg2_hour =_reg2_hour | 0x60;}void RealTimeClockDS1307::switchTo12h(){ if(is12hour()) { return; } int h =getHours(); if (h <12) { setAM(); } else { h =h-12; setPM(); } if (h==0) { h=12; } setHours(h);}void RealTimeClockDS1307::switchTo24h(){ if(!is12hour()) { return; } int h =getHours(); if(h==12) {//12 PM is just 12; 12 AM is 0 hours. h =0; } if (isPM()) {//if it was 12 PM, then h=0 above and so we're back to 12:h =h+12; } set24h(); setHours(h);}void RealTimeClockDS1307::setDayOfWeek(int d){ if (d> 0 &&d <8) { _reg3_day =decToBcd(d); }}void RealTimeClockDS1307::setDate(int d){ if (d> 0 &&d <32) { _reg4_date =decToBcd(d); }}void RealTimeClockDS1307::setDay(int d){ setDate(d);}void RealTimeClockDS1307::setMonth(int m){ if (m> 0 &&m <13) { _reg5_month =decToBcd(m); }}void RealTimeClockDS1307::setYear(int y){ if (y>=0 &&y <100) { _reg6_year =decToBcd(y); }}/***************************************** * Private methods *****************************************/byte RealTimeClockDS1307::decToBcd(byte b){ return ( ((b/10) <<4) + (b%10) );}// Convert binary coded decimal to normal decimal numbersbyte RealTimeClockDS1307::bcdToDec(byte b){ return ( ((b>> 4)*10) + (b%16) );}char RealTimeClockDS1307::lowNybbleToASCII(byte b) { b =b &0x0f; if(b <10) { //0 is ASCII 48 return 48+b; } //A is ASCII 55 return 55+b;}char RealTimeClockDS1307::highNybbleToASCII(byte b){ return lowNybbleToASCII(b>> 4);}/***** INSTANCE *******/RealTimeClockDS1307 RTC =RealTimeClockDS1307();
RTClibC/C++
add this to the RTClib folder. Now you have all the necessary files for the RTClib. Now do the same as I told you with the 'RealTimeClockDS1307' library file.
/* RealTimeClockDS1307 - library to control a DS1307 RTC module Copyright (c) 2011 David H. Brown. All rights reserved v0.92 Updated for Arduino 1.00; not re-tested on earlier versions Much thanks to John Waters and Maurice Ribble for their earlier and very helpful work (even if I didn't wind up using any of their code):- http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 This library is free software; Anda dapat mendistribusikan ulang dan/atau memodifikasinya di bawah ketentuan Lisensi Publik Umum GNU yang diterbitkan oleh Free Software Foundation; baik versi 2.1 dari Lisensi, atau (sesuai pilihan Anda) versi yang lebih baru. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/#ifndef RealTimeClockDS1307_h#define RealTimeClockDS1307_h #if defined(ARDUINO) &&ARDUINO>=100 #include "Arduino.h" #else #include "WProgram.h" #endif//#include //#include  //need/want 'boolean' and 'byte' types used by Arduino//#undef round is required to avoid a compile-time//"expected unqualified-id before 'double'" error in math.h//see:http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1247924528/3#undef round #include #define ARDUINO_PIN_T uint8_tclass RealTimeClockDS1307{ private:byte _reg0_sec; byte _reg1_min; byte _reg2_hour; byte _reg3_day; byte _reg4_date; byte _reg5_month; byte _reg6_year; byte _reg7_sqw; byte decToBcd(byte); byte bcdToDec(byte); char lowNybbleToASCII(byte); char highNybbleToASCII(byte); public:RealTimeClockDS1307(); void readClock();//read registers (incl sqw) to local store void setClock();//update clock registers from local store void stop();//immediate; does not require setClock(); void start();//immediate; does not require setClock(); void sqwEnable(byte);//enable the square wave with the specified frequency void sqwDisable(boolean);//disable the square wave, setting output either high or low void writeData(byte, byte);//write a single value to a register void writeData(byte, void *, int);//write several values consecutively byte readData(byte);//read a single value from a register void readData(byte, void *, int);//read several values into a buffer int getHours(); int getMinutes(); int getSeconds(); int getYear(); int getMonth(); int getDate(); int getDay(); int getDayOfWeek(); boolean is12hour(); boolean isPM(); boolean isStopped(); //getFormatted writes into a char array provided by you. Format is:// YY-MM-DD HH:II:SS ... plus "A" or "P" if in 12-hour mode //and of course a NULL terminator. So, [18] for 24h or [19] for 12h void getFormatted(char *);//see comment above void getFormatted2k(char *);//as getFormatted, but with "20" prepended //must also call setClock() after any of these //before next readClock(). Note that invalid dates are not //corrected by the clock. All the clock knows is when it should //roll over to the next month rather than the next date in the same month. void setSeconds(int); void setMinutes(int); //setHours rejects values out of range for the current 12/24 mode void setHours(int); void setAM();//does not consider hours; see switchTo24() void setPM();//does not consider hours; see switchTo24() void set24h();//does not consider hours; see switchTo24() void switchTo24h();//returns immediately if already 24h void switchTo12h();//returns immediately if already 12h void setDayOfWeek(int);//incremented at midnight; not set by date (no fixed meaning) void setDate(int);//allows 1-31 for *all* months. void setDay(int); void setMonth(int); void setYear(int); //squarewave frequencies:static const byte SQW_1Hz=0x00; static const byte SQW_4kHz=0x01;//actually 4.096kHz static const byte SQW_8kHz=0x02;//actually 8.192kHz static const byte SQW_32kHz=0x03;//actually 32.768kHz};extern RealTimeClockDS1307 RTC;#endif
README.mdC/C++
add this to the RTClib library
This is a fork of JeeLab's fantastic real time clock library for Arduino.For details on using this library with an RTC module like the DS1307, see the guide at:https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/overviewTo download. click the DOWNLOADS button to the right, and rename the uncompressed folder RTClib.Place the RTClib folder in your *arduinosketchfolder*/libraries/ folder. You may need to create the libraries subfolder if its your first library. Restart the IDE.## CompatibilityMCU | Tested Works | Doesn't Work | Not Tested | Notes------------------ | :----------:| :----------:| :---------:| -----Atmega328 @ 16MHz | X | | | Atmega328 @ 12MHz | X | | | Atmega32u4 @ 16MHz | X | | | Use SDA/SCL on pins D3 & D2Atmega32u4 @ 8MHz | X | | | Use SDA/SCL on pins D3 & D2ESP8266 | X | | | SDA/SCL default to pins 4 & 5 but any two pins can be assigned as SDA/SCL using Wire.begin(SDA,SCL)Atmega2560 @ 16MHz | X | | | Use SDA/SCL on Pins 20 & 21ATSAM3X8E | X | | | Use SDA1 and SCL1ATSAM21D | X | | | ATtiny85 @ 16MHz | X | | | ATtiny85 @ 8MHz | X | | | Intel Curie @ 32MHz | | | X | STM32F2 | | | X | * ATmega328 @ 16MHz :Arduino UNO, Adafruit Pro Trinket 5V, Adafruit Metro 328, Adafruit Metro Mini * ATmega328 @ 12MHz :Adafruit Pro Trinket 3V * ATmega32u4 @ 16MHz :Arduino Leonardo, Arduino Micro, Arduino Yun, Teensy 2.0 * ATmega32u4 @ 8MHz :Adafruit Flora, Bluefruit Micro * ESP8266 :Adafruit Huzzah * ATmega2560 @ 16MHz :Arduino Mega * ATSAM3X8E :Arduino Due * ATSAM21D :Arduino Zero, M0 Pro * ATtiny85 @ 16MHz :Adafruit Trinket 5V * ATtiny85 @ 8MHz :Adafruit Gemma, Arduino Gemma, Adafruit Trinket 3V
RTClib.cppC/C++
name it as above and add it to the RTClib library
// Code by JeeLabs http://news.jeelabs.org/code/// Released to the public domain! Enjoy!#include #include "RTClib.h"#ifdef __AVR__ #include #elif defined(ESP8266) #include #elif defined(ARDUINO_ARCH_SAMD)// nothing special needed#elif defined(ARDUINO_SAM_DUE) #define PROGMEM #define pgm_read_byte(addr) (*(const unsigned char *)(addr)) #define Wire Wire1#endif#if (ARDUINO>=100) #include  // capital A so it is error prone on case-sensitive filesystems // Macro to deal with the difference in I2C write functions from old and new Arduino versions. #define _I2C_WRITE write #define _I2C_READ read#else #include  #define _I2C_WRITE send #define _I2C_READ receive#endifstatic uint8_t read_i2c_register(uint8_t addr, uint8_t reg) { Wire.beginTransmission(addr); Wire._I2C_WRITE((byte)reg); Kawat.endTransmisi(); Wire.requestFrom(addr, (byte)1); return Wire._I2C_READ();}static void write_i2c_register(uint8_t addr, uint8_t reg, uint8_t val) { Wire.beginTransmission(addr); Wire._I2C_WRITE((byte)reg); Wire._I2C_WRITE((byte)val); Wire.endTransmission();}////////////////////////////////////////////////////////////////////////////////// utility code, some of this could be exposed in the DateTime API if neededconst uint8_t daysInMonth [] PROGMEM ={ 31,28,31,30,31,30,31,31,30,31,30,31 };// number of days since 2000/01/01, valid for 2001..2099static uint16_t date2days(uint16_t y, uint8_t m, uint8_t d) { if (y>=2000) y -=2000; uint16_t days =d; for (uint8_t i =1; i  2 &&y % 4 ==0) ++days; return days + 365 * y + (y + 3) / 4 - 1;}static long time2long(uint16_t days, uint8_t h, uint8_t m, uint8_t s) { return ((days * 24L + h) * 60 + m) * 60 + s;}////////////////////////////////////////////////////////////////////////////////// DateTime implementation - ignores time zones and DST changes// NOTE:also ignores leap seconds, see http://en.wikipedia.org/wiki/Leap_secondDateTime::DateTime (uint32_t t) { t -=SECONDS_FROM_1970_TO_2000; // bring to 2000 timestamp from 1970 ss =t % 60; t /=60; mm =t % 60; t /=60; hh =t % 24; uint16_t days =t / 24; uint8_t leap; for (yOff =0;; ++yOff) { leap =yOff % 4 ==0; if (days <365 + leap) break; days -=365 + leap; } for (m =1;; ++m) { uint8_t daysPerMonth =pgm_read_byte(daysInMonth + m - 1); if (leap &&m ==2) ++daysPerMonth; if (days =2000) year -=2000; yOff =year; m =month; d =day; hh =hour; mm =min; ss =sec;}DateTime::DateTime (const DateTime©):yOff(copy.yOff), m(copy.m), d(copy.d), hh(copy.hh), mm(copy.mm), ss(copy.ss){}static uint8_t conv2d(const char* p) { uint8_t v =0; if ('0' <=*p &&*p <='9') v =*p - '0'; return 10 * v + *++p - '0';}// A convenient constructor for using "the compiler's time":// DateTime now (__DATE__, __TIME__);// NOTE:using F() would further reduce the RAM footprint, see below.DateTime::DateTime (const char* date, const char* time) { // sample input:date ="Dec 26 2009", time ="12:34:56" yOff =conv2d(date + 9); // Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec switch (date[0]) { case 'J':m =date[1] =='a' ? 1 :m =date[2] =='n' ? 6 :7; merusak; case 'F':m =2; merusak; case 'A':m =date[2] =='r' ? 4 :8; merusak; case 'M':m =date[2] =='r' ? 3 :5; merusak; case 'S':m =9; merusak; case 'O':m =10; merusak; case 'N':m =11; merusak; case 'D':m =12; merusak; } d =conv2d(date + 4); hh =conv2d(time); mm =conv2d(time + 3); ss =conv2d(time + 6);}// A convenient constructor for using "the compiler's time":// This version will save RAM by using PROGMEM to store it by using the F macro.// DateTime now (F(__DATE__), F(__TIME__));DateTime::DateTime (const __FlashStringHelper* date, const __FlashStringHelper* time) { // sample input:date ="Dec 26 2009", time ="12:34:56" char buff[11]; memcpy_P(buff, date, 11); yOff =conv2d(buff + 9); // Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec switch (buff[0]) { case 'J':m =buff[1] =='a' ? 1 :m =buff[2] =='n' ? 6 :7; merusak; case 'F':m =2; merusak; case 'A':m =buff[2] =='r' ? 4 :8; merusak; case 'M':m =buff[2] =='r' ? 3 :5; merusak; case 'S':m =9; merusak; case 'O':m =10; merusak; case 'N':m =11; merusak; case 'D':m =12; merusak; } d =conv2d(buff + 4); memcpy_P(buff, time, 8); hh =conv2d(buff); mm =conv2d(buff + 3); ss =conv2d(buff + 6);}uint8_t DateTime::dayOfTheWeek() const { uint16_t day =date2days(yOff, m, d); return (day + 6) % 7; // Jan 1, 2000 is a Saturday, i.e. returns 6}uint32_t DateTime::unixtime(void) const { uint32_t t; uint16_t days =date2days(yOff, m, d); t =time2long(days, hh, mm, ss); t +=SECONDS_FROM_1970_TO_2000; // seconds from 1970 to 2000 return t;}long DateTime::secondstime(void) const { long t; uint16_t days =date2days(yOff, m, d); t =time2long(days, hh, mm, ss); return t;}DateTime DateTime::operator+(const TimeSpan&span) { return DateTime(unixtime()+span.totalseconds());}DateTime DateTime::operator-(const TimeSpan&span) { return DateTime(unixtime()-span.totalseconds());}TimeSpan DateTime::operator-(const DateTime&right) { return TimeSpan(unixtime()-right.unixtime());}////////////////////////////////////////////////////////////////////////////////// TimeSpan implementationTimeSpan::TimeSpan (int32_t seconds):_seconds(seconds){}TimeSpan::TimeSpan (int16_t days, int8_t hours, int8_t minutes, int8_t seconds):_seconds((int32_t)days*86400L + (int32_t)hours*3600 + (int32_t)minutes*60 + seconds){}TimeSpan::TimeSpan (const TimeSpan©):_seconds(copy._seconds){}TimeSpan TimeSpan::operator+(const TimeSpan&right) { return TimeSpan(_seconds+right._seconds);}TimeSpan TimeSpan::operator-(const TimeSpan&right) { return TimeSpan(_seconds-right._seconds);}////////////////////////////////////////////////////////////////////////////////// RTC_DS1307 im plementationstatic uint8_t bcd2bin (uint8_t val) { return val - 6 * (val>> 4); }static uint8_t bin2bcd (uint8_t val) { return val + 6 * (val / 10); }boolean RTC_DS1307::begin(void) { Wire.begin(); return true;}uint8_t RTC_DS1307::isrunning(void) { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE((byte)0); Kawat.endTransmisi(); Wire.requestFrom(DS1307_ADDRESS, 1); uint8_t ss =Wire._I2C_READ(); return !(ss>>7);}void RTC_DS1307::adjust(const DateTime&dt) { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE((byte)0); // start at location 0 Wire._I2C_WRITE(bin2bcd(dt.second())); Wire._I2C_WRITE(bin2bcd(dt.minute())); Wire._I2C_WRITE(bin2bcd(dt.hour())); Wire._I2C_WRITE(bin2bcd(0)); Wire._I2C_WRITE(bin2bcd(dt.day())); Wire._I2C_WRITE(bin2bcd(dt.month())); Wire._I2C_WRITE(bin2bcd(dt.year() - 2000)); Wire.endTransmission();}DateTime RTC_DS1307::now() { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE((byte)0); Kawat.endTransmisi(); Wire.requestFrom(DS1307_ADDRESS, 7); uint8_t ss =bcd2bin(Wire._I2C_READ() &0x7F); uint8_t mm =bcd2bin(Wire._I2C_READ()); uint8_t hh =bcd2bin(Wire._I2C_READ()); Wire._I2C_READ(); uint8_t d =bcd2bin(Wire._I2C_READ()); uint8_t m =bcd2bin(Wire._I2C_READ()); uint16_t y =bcd2bin(Wire._I2C_READ()) + 2000; return DateTime (y, m, d, hh, mm, ss);}Ds1307SqwPinMode RTC_DS1307::readSqwPinMode() { int mode; Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE(DS1307_CONTROL); Kawat.endTransmisi(); Wire.requestFrom((uint8_t)DS1307_ADDRESS, (uint8_t)1); mode =Wire._I2C_READ(); mode &=0x93; return static_cast(mode);}void RTC_DS1307::writeSqwPinMode(Ds1307SqwPinMode mode) { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE(DS1307_CONTROL); Wire._I2C_WRITE(mode); Wire.endTransmission();}void RTC_DS1307::readnvram(uint8_t* buf, uint8_t size, uint8_t address) { int addrByte =DS1307_NVRAM + address; Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE(addrByte); Kawat.endTransmisi(); Wire.requestFrom((uint8_t) DS1307_ADDRESS, size); for (uint8_t pos =0; pos >=3; mode &=0x7; return static_cast(mode);}void RTC_PCF8523::writeSqwPinMode(Pcf8523SqwPinMode mode) { Wire.beginTransmission(PCF8523_ADDRESS); Wire._I2C_WRITE(PCF8523_CLKOUTCONTROL); Wire._I2C_WRITE(mode <<3); Wire.endTransmission();}////////////////////////////////////////////////////////////////////////////////// RTC_DS3231 implementationboolean RTC_DS3231::begin(void) { Wire.begin(); return true;}bool RTC_DS3231::lostPower(void) { return (read_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG)>> 7);}void RTC_DS3231::adjust(const DateTime&dt) { Wire.beginTransmission(DS3231_ADDRESS); Wire._I2C_WRITE((byte)0); // start at location 0 Wire._I2C_WRITE(bin2bcd(dt.second())); Wire._I2C_WRITE(bin2bcd(dt.minute())); Wire._I2C_WRITE(bin2bcd(dt.hour())); Wire._I2C_WRITE(bin2bcd(0)); Wire._I2C_WRITE(bin2bcd(dt.day())); Wire._I2C_WRITE(bin2bcd(dt.month())); Wire._I2C_WRITE(bin2bcd(dt.year() - 2000)); Kawat.endTransmisi(); uint8_t statreg =read_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG); statreg &=~0x80; // flip OSF bit write_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG, statreg);}DateTime RTC_DS3231::now() { Wire.beginTransmission(DS3231_ADDRESS); Wire._I2C_WRITE((byte)0); Kawat.endTransmisi(); Wire.requestFrom(DS3231_ADDRESS, 7); uint8_t ss =bcd2bin(Wire._I2C_READ() &0x7F); uint8_t mm =bcd2bin(Wire._I2C_READ()); uint8_t hh =bcd2bin(Wire._I2C_READ()); Wire._I2C_READ(); uint8_t d =bcd2bin(Wire._I2C_READ()); uint8_t m =bcd2bin(Wire._I2C_READ()); uint16_t y =bcd2bin(Wire._I2C_READ()) + 2000; return DateTime (y, m, d, hh, mm, ss);}Ds3231SqwPinMode RTC_DS3231::readSqwPinMode() { int mode; Wire.beginTransmission(DS3231_ADDRESS); Wire._I2C_WRITE(DS3231_CONTROL); Kawat.endTransmisi(); Wire.requestFrom((uint8_t)DS3231_ADDRESS, (uint8_t)1); mode =Wire._I2C_READ(); mode &=0x93; return static_cast(mode);}void RTC_DS3231::writeSqwPinMode(Ds3231SqwPinMode mode) { uint8_t ctrl; ctrl =read_i2c_register(DS3231_ADDRESS, DS3231_CONTROL); ctrl &=~0x04; // turn off INTCON ctrl &=~0x18; // set freq bits to 0 if (mode ==DS3231_OFF) { ctrl |=0x04; // turn on INTCN } else { ctrl |=mode; } write_i2c_register(DS3231_ADDRESS, DS3231_CONTROL, ctrl); //Serial.println( read_i2c_register(DS3231_ADDRESS, DS3231_CONTROL), HEX);}
RTClib.hC/C++
that's the name. add it to the RTClib library. Now you have all the files for the RTClib library. Do the same steps to add this to the arduino libraries.
// Code by JeeLabs http://news.jeelabs.org/code/// Released to the public domain! Enjoy!#ifndef _RTCLIB_H_#define _RTCLIB_H_#include class TimeSpan;#define PCF8523_ADDRESS 0x68#define PCF8523_CLKOUTCONTROL 0x0F#define PCF8523_CONTROL_3 0x02#define DS1307_ADDRESS 0x68#define DS1307_CONTROL 0x07#define DS1307_NVRAM 0x08#define DS3231_ADDRESS 0x68#define DS3231_CONTROL 0x0E#define DS3231_STATUSREG 0x0F#define SECONDS_PER_DAY 86400L#define SECONDS_FROM_1970_TO_2000 946684800// Simple general-purpose date/time class (no TZ / DST / leap second handling!)class DateTime {public:DateTime (uint32_t t =0); DateTime (uint16_t year, uint8_t month, uint8_t day, uint8_t hour =0, uint8_t min =0, uint8_t sec =0); DateTime (const DateTime©); DateTime (const char* date, const char* time); DateTime (const __FlashStringHelper* date, const __FlashStringHelper* time); uint16_t year() const { return 2000 + yOff; } uint8_t month() const { return m; } uint8_t day() const { return d; } uint8_t hour() const { return hh; } uint8_t minute() const { return mm; } uint8_t second() const { return ss; } uint8_t dayOfTheWeek() const; // 32-bit times as seconds since 1/1/2000 long secondstime() const; // 32-bit times as seconds since 1/1/1970 uint32_t unixtime(void) const; DateTime operator+(const TimeSpan&span); DateTime operator-(const TimeSpan&span); TimeSpan operator-(const DateTime&right);protected:uint8_t yOff, m, d, hh, mm, ss;};// Timespan which can represent changes in time with seconds accuracy.class TimeSpan {public:TimeSpan (int32_t seconds =0); TimeSpan (int16_t days, int8_t hours, int8_t minutes, int8_t seconds); TimeSpan (const TimeSpan©); int16_t days() const { return _seconds / 86400L; } int8_t hours() const { return _seconds / 3600 % 24; } int8_t minutes() const { return _seconds / 60 % 60; } int8_t seconds() const { return _seconds % 60; } int32_t totalseconds() const { return _seconds; } TimeSpan operator+(const TimeSpan&right); TimeSpan operator-(const TimeSpan&right);protected:int32_t _seconds;};// RTC based on the DS1307 chip connected via I2C and the Wire libraryenum Ds1307SqwPinMode { OFF =0x00, ON =0x80, SquareWave1HZ =0x10, SquareWave4kHz =0x11, SquareWave8kHz =0x12, SquareWave32kHz =0x13 };class RTC_DS1307 {public:boolean begin(void); static void adjust(const DateTime&dt); uint8_t isrunning(void); static DateTime now(); static Ds1307SqwPinMode readSqwPinMode(); static void writeSqwPinMode(Ds1307SqwPinMode mode); uint8_t readnvram(uint8_t address); void readnvram(uint8_t* buf, uint8_t size, uint8_t address); void writenvram(uint8_t address, uint8_t data); void writenvram(uint8_t address, uint8_t* buf, uint8_t size);};// RTC based on the DS3231 chip connected via I2C and the Wire libraryenum Ds3231SqwPinMode { DS3231_OFF =0x01, DS3231_SquareWave1Hz =0x00, DS3231_SquareWave1kHz =0x08, DS3231_SquareWave4kHz =0x10, DS3231_SquareWave8kHz =0x18 };class RTC_DS3231 {public:boolean begin(void); static void adjust(const DateTime&dt); bool lostPower(void); static DateTime now(); static Ds3231SqwPinMode readSqwPinMode(); static void writeSqwPinMode(Ds3231SqwPinMode mode);};// RTC based on the PCF8523 chip connected via I2C and the Wire libraryenum Pcf8523SqwPinMode { PCF8523_OFF =7, PCF8523_SquareWave1HZ =6, PCF8523_SquareWave32HZ =5, PCF8523_SquareWave1kHz =4, PCF8523_SquareWave4kHz =3, PCF8523_SquareWave8kHz =2, PCF8523_SquareWave16kHz =1, PCF8523_SquareWave32kHz =0 };class RTC_PCF8523 {public:boolean begin(void); void adjust(const DateTime&dt); boolean initialized(void); static DateTime now(); Pcf8523SqwPinMode readSqwPinMode(); void writeSqwPinMode(Pcf8523SqwPinMode mode);};// RTC using the internal millis() clock, has to be initialized before use// NOTE:this clock won't be correct once the millis() timer rolls over (>49d?)class RTC_Millis {public:static void begin(const DateTime&dt) { adjust(dt); } static void adjust(const DateTime&dt); static DateTime now();protected:static long offset;};#endif // _RTCLIB_H_

Skema

This is the schematic of the project. 7segmentClock.fzz

Proses manufaktur

  1. Papan Setrika
  2. Jam Kuku
  3. Papan Sirkuit Cetak
  4. Papan selancar
  5. Cara Membuat Platform Robot Arduino+Raspberry Pi
  6. RaspiRobot Board V2
  7. Arduino pov vision clock
  8. Jam cermin tak terbatas
  9. Ada lebih dari satu Alasan untuk Membuat Papan Sirkuit Cetak Sempurna
  10. Memahami konfigurasi mesin