Manufaktur industri
Industri Internet of Things | bahan industri | Pemeliharaan dan Perbaikan Peralatan | Pemrograman industri |
home  MfgRobots >> Manufaktur industri >  >> Industrial materials >> bahan nano

Nanopartikel Emas Multifungsi untuk Aplikasi Diagnostik dan Terapi yang Lebih Baik:Tinjauan

Abstrak

Sifat medis logam telah dieksplorasi selama berabad-abad dalam pengobatan tradisional untuk pengobatan infeksi dan penyakit dan masih dipraktekkan sampai saat ini. Obat berbasis platinum adalah kelas pertama dari obat berbasis logam yang digunakan secara klinis sebagai agen antikanker setelah persetujuan cisplatin oleh Badan Pengawas Obat dan Makanan Amerika Serikat (FDA) lebih dari 40 tahun yang lalu. Sejak itu, lebih banyak logam dengan manfaat kesehatan telah disetujui untuk uji klinis. Menariknya, ketika logam-logam ini direduksi menjadi nanopartikel logam, mereka menunjukkan sifat-sifat unik dan baru yang lebih unggul daripada rekan-rekan massal mereka. Nanopartikel emas (AuNPs) adalah salah satu nanopartikel logam yang disetujui FDA dan telah menunjukkan harapan besar dalam berbagai peran dalam kedokteran. Mereka digunakan sebagai penghantaran obat, fototermal (PT), kontras, terapi, radiosensitisasi, dan agen transfeksi gen. Aplikasi biomedisnya ditinjau di sini, mencakup potensi penggunaannya dalam diagnosis dan terapi penyakit. Beberapa sistem berbasis AuNP yang disetujui untuk uji klinis juga dibahas, serta potensi ancaman kesehatan AuNP dan beberapa strategi yang dapat digunakan untuk meningkatkan biokompatibilitasnya. Studi yang ditinjau menawarkan bukti prinsip bahwa sistem berbasis AuNP berpotensi digunakan sendiri atau dalam kombinasi dengan sistem konvensional untuk meningkatkan kemanjurannya.

Pengantar

Kedokteran adalah salah satu dari banyak bidang yang telah diuntungkan dari nanoteknologi. Nanoteknologi muncul dengan banyak peluang untuk meningkatkan dan mengembangkan agen diagnostik dan terapeutik baru melalui penggunaan bahan nano [1, 2]. AuNPs, khususnya, menunjukkan sifat fisikokimia yang unik dan stabilitas kimia yang baik. Mereka mudah difungsikan dengan hampir setiap jenis molekul pemberi elektron, melalui berbagai kimia atau berdasarkan afinitas kuat mereka untuk molekul tiolasi [3, 4]. Karena ukurannya yang kecil, AuNPs memiliki luas permukaan yang lebih besar dan kapasitas pemuatan obat yang tinggi. Beberapa bagian dapat digabungkan dalam AuNPs untuk aplikasi biomedis; ini termasuk molekul penargetan untuk meningkatkan spesifisitas, agen kontras untuk bio-imaging dan untuk memantau respon penyakit terhadap obat secara real time, dan agen terapi untuk pengobatan penyakit [5, 6]. Menariknya, bahkan tanpa biomolekul tambahan apa pun, AuNPs mampu menargetkan, pencitraan, dan pengobatan penyakit. Berdasarkan sifatnya yang bergantung pada ukurannya, sistem berbasis AuNP baru dapat dibuat untuk digunakan dalam berbagai aplikasi biomedis [7].

AuNPs terbuat dari prekursor logam yang termostabil dan karenanya sangat stabil dan tidak dapat terurai secara hayati. Emas curah digunakan dalam pengobatan dan telah terbukti bio-inert dan tidak beracun [8, 9]; karenanya, inti emas di AuNPs pada dasarnya akan menampilkan properti serupa [3, 10]. AuNPs dan aplikasinya telah dipelajari secara ekstensif selama lebih dari lima dekade dan telah menunjukkan harapan besar sebagai agen theranostik dalam studi praklinis [5, 11,12,13] dan klinis [14,15,16,17,18]. Lebih banyak peluang untuk sistem berbasis AuNP baru ada seperti yang dibahas dalam ulasan ini. AuNPs sudah dieksplorasi dalam uji klinis sebagai pembawa obat untuk pengobatan kanker stadium akhir [16, 17], dan sebagai agen PT dalam pengobatan kanker prostat [19] dan jerawat [18]. Tanpa merusak kesehatan dan masalah regulasi yang melingkupi penggunaan AuNPs [20], masa depan sistem ini dalam biomedis sudah dekat. Sistem berbasis AuNP multifungsi yang mampu memerangi resistensi obat dengan kemanjuran lokal dan ditingkatkan adalah mungkin [11, 21, 22]. Tinjauan tersebut menyoroti sifat biologis AuNPs dalam studi praklinis dan klinis, dengan merefleksikan aplikasi bio mereka sebagai agen diagnostik dan terapeutik. Potensi ancaman kesehatan mereka dan strategi yang digunakan untuk mengatasi keterbatasan mereka juga dijelaskan. Akhirnya, perspektif masa depan AuNPs dalam kedokteran disorot.

Nanopartikel Emas

Popularitas AuNPs dalam aplikasi medis telah mendapatkan banyak momentum karena sifat kimia dan fisiknya yang unik. AuNPs adalah partikel koloid padat yang ukurannya berkisar dari 1 hingga 100 nm [23]. Aplikasi AuNPs dalam biologi berakar pada sifat fisikokimianya, tidak terbatas pada ukurannya, resonansi plasmon permukaan (SPR), bentuk dan kimia permukaannya [3, 10]. Parameter ini mempengaruhi aktivitasnya dan menjadikannya kandidat yang sempurna untuk digunakan dalam diagnosis dan pengobatan penyakit, baik sebagai pemberian, sensitisasi, kontras, atau agen terapeutik. Ukurannya yang kecil dikaitkan dengan luas permukaan yang lebih besar, yang memungkinkan modifikasi permukaan dan pemasangan beberapa muatan, seperti penargetan, pencitraan, dan agen terapeutik [4, 24,25,26]. Ukurannya yang kecil juga memungkinkan NP dan muatannya melintasi penghalang biologis yang sulit dijangkau dan ditembus [11].

AuNP semakin diakui sebagai agen diagnostik, terapeutik, dan theranostik yang layak (agen yang secara bersamaan dapat digunakan untuk mendiagnosis dan mengobati penyakit), yang berpotensi mengatasi efek di luar target yang terkait dengan terapi konvensional. Namun, AuNPs memiliki sifat dan fungsi yang berbeda dibandingkan dengan rekan massal biokompatibel mereka, yang bisa berbahaya bagi kesehatan manusia [27,28,29]. Penggunaan klinis senyawa emas curah untuk pengobatan penyakit adalah praktik kuno dan disertifikasi sebagai aman [8]. Dalam beberapa tahun terakhir, penelitian telah menunjukkan bahwa AuNPs memiliki sifat medis yang serupa atau lebih baik [29]. Karena sifat optik, kimia, dan fisiknya yang unik, AuNP sering menghadirkan sifat baru dibandingkan dengan emas curah [30, 31] dan dapat berfungsi sebagai agen diagnostik dan terapeutik [5].

Sintesis AuNP

AuNPs dapat diproduksi dengan beberapa cara mengikuti pendekatan top-down atau bottom-up. Pendekatan top-down menggunakan metode fisik dan kimia untuk menghasilkan ukuran yang diinginkan dari bahan curah, sedangkan pendekatan bottom-up melibatkan metode kimia untuk merakit blok bangunan dalam pembentukan sistem berukuran nano [32, 33]. Metode fisik (seperti penggilingan, fotokimia, radiasi, dan litografi) menggunakan energi dan tekanan ekstensif untuk mengecilkan material curah menjadi 10 –9 sepersejuta meter dalam ukuran [10, 32, 34]. Proses nukleasi mudah dikontrol saat menggunakan metode fisik, zat pereduksi tidak diperlukan, dan dengan beberapa metode ini sintesis terjadi bersamaan dengan sterilisasi NP. Namun, teknologi fisik seringkali mahal, tidak tersedia dan memerlukan peralatan khusus. Selain itu, zat penahan dan penstabil mungkin tidak dapat bertahan dari proses energi tinggi yang terlibat dalam proses ini [34].

Pendekatan bottom-up sebagian besar lebih disukai dalam sintesis AuNPs karena cepat, mudah dan tidak memerlukan penggunaan peralatan canggih [33,34,35]. Ini didasarkan pada metode kimia yang dikembangkan oleh Turkevich pada tahun 1951 (Gbr. 1A), yang menggunakan sitrat untuk reduksi dan stabilisasi prekursor emas, menghasilkan produksi AuNPs bulat 15 nm [3, 10, 23, 33, 36 , 37]. Metode ini selanjutnya dimodifikasi dengan memvariasikan rasio sitrat dengan kandungan prekursor emas dan menghasilkan kisaran diameter ukuran 15-150 nm AuNPs (Gbr. 1B) [10, 24]. Sejumlah zat pereduksi seperti natrium borohidrida, setiltrimetilamonium bromida (CTAB) dan asam askorbat juga diperkenalkan. Beberapa zat pereduksi kimia sayangnya bersifat toksik [33, 34, 36] dan biasanya dipasivasi dengan menambahkan zat penstabil pada permukaannya seperti polietilen glikol (PEG), gum arab, polisakarida dan peptida bioaktif [37, 38].

Formulasi AuNP melalui sistem satu fase dengan reduksi sitrat (A ) dan reduksi sistem dua fase diikuti dengan stabilisasi dan fungsionalisasi melalui reaksi pertukaran ligan, metode Brust–Schiffrin (B ). Direproduksi dengan izin [36]. Hak Cipta 2013, De Gruyter. TOAB tetrabutilamonium bromida, SH molekul tiolasi

Pendekatan yang lebih ramah lingkungan seperti microwave-induced plasma-in-liquid process (MWPLP) dan nanoteknologi hijau telah dieksplorasi dalam sintesis AuNPs untuk menghindari penggunaan zat pereduksi kimia beracun. MWPLP menggunakan gelombang mikro untuk menghasilkan nukleasi NP logam dan tidak memerlukan zat pereduksi, dan energi yang dibutuhkan untuk sintesis sangat rendah [34]. Nanoteknologi hijau, di sisi lain, menggunakan senyawa alami yang berasal dari tumbuhan dan mikroorganisme sebagai sumber reduktor dalam sintesis AuNPs biogenik [12, 33, 39,40,41]. Nanoteknologi hijau dianggap ramah lingkungan dan ramah lingkungan sehingga lebih cocok untuk aplikasi biomedis. Sintesis yang dimediasi tanaman lebih ekonomis daripada menggunakan mikroorganisme. Selain itu, sintesis dapat dilakukan hanya dalam satu langkah, dan NP lebih mudah dimurnikan. Selain itu, tanaman dapat diperbarui; berbagai bagian tanaman seperti daun, batang, kulit kayu, akar, bunga dan buah dapat dipanen tanpa membunuh tanaman dan digunakan untuk sintesis. Ekstrak yang dibuat dari bahan tumbuhan mengandung fitokimia, protein, dan enzim yang dapat berfungsi sebagai agen pereduksi, penstabil, dan capping [10, 12, 24, 34, 35, 40, 42]. Epigallocatechin dari teh hijau [42] dan mangiferin (MGF) dari mangga [12, 43] adalah di antara senyawa turunan tanaman yang telah banyak digunakan untuk mensintesis AuNPs [34]. Informasi lebih lanjut tentang metode ini ditinjau secara ekstensif dalam referensi berikut [10, 24, 34, 35].

Aplikasi Biologis AuNP

Peran dan signifikansi AuNPs dalam ilmu kedokteran tidak diragukan lagi menjadi lebih terlihat, yang didukung oleh meningkatnya jumlah penelitian yang menunjukkan aplikasi multifaset mereka dalam berbagai bidang biomedis. Biokompatibilitas AuNPs dikaitkan dengan sejarah panjang emas dalam pengobatan penyakit manusia, yang kembali ke 2500-2600 SM. Orang Cina dan India menggunakan emas untuk pengobatan impotensi pria, epilepsi, sifilis, penyakit rematik dan TBC. Cina menemukan efek umur panjang dari koloid emas merah, yang masih dipraktekkan di India sebagai bagian dari pengobatan Ayurveda untuk peremajaan dan revitalisasi. Cinnabar-emas (juga dikenal sebagai Makaradhwaja) digunakan untuk meningkatkan kesuburan di India. Di negara-negara Barat, emas telah digunakan untuk mengobati gangguan saraf dan epilepsi. Tidak ada toksisitas yang dilaporkan untuk penggunaannya dalam studi in vitro dan in vivo [8, 44, 45]. Sejak itu, senyawa emas oral dan injeksi terus digunakan sebagai pengobatan untuk arthritis [9, 46] dan juga telah terbukti memiliki efek antikanker [8]. Efek serupa dan dalam beberapa kasus juga dilaporkan untuk AuNPs, yang muncul sebagai agen yang menjanjikan untuk diagnosis penyakit [47,48,49] dan terapi [3, 29, 50, 51].

AuNPs memiliki luas permukaan yang lebih besar yang dapat dimanfaatkan untuk aplikasi biomedis, dengan menempelkan berbagai biomolekul agar sesuai dengan fungsi yang diinginkan. Ini dapat mencakup bagian penargetan untuk membantu mengenali biomarker spesifik penyakit, agen kontras untuk bio-imaging dan agen terapeutik untuk pengobatan penyakit [24, 25]. Keuntungan menggunakan AuNPs dibandingkan nanomaterial lainnya adalah bahwa mereka dapat dengan mudah difungsikan menggunakan berbagai kimia seperti yang ditunjukkan pada Gambar. 2 [4, 26]. AuNPs memiliki afinitas tinggi untuk molekul tiolasi, dan pengikatan tiol-emas adalah metode yang paling umum digunakan untuk mengadsorbsi molekul ke permukaan NP [4]. Kimia berbasis afinitas seperti pengikatan biotin-streptavidin dan kopling karbodiimida juga digunakan. AuNPs digunakan dalam tiga bidang utama biomedis:pengiriman obat-obatan, tujuan diagnostik dan terapeutik [24, 35], dan telah menunjukkan potensi besar di bidang ini seperti yang dibahas di bawah ini.

Sintesis dan fungsionalisasi AuNPs. Biomolekul dengan gugus fungsi pertama diadsorpsi pada permukaan NP melalui afinitas emas-tiol. Kemudian, gugus fungsi lain seperti gugus amina dapat digunakan untuk mengikat molekul dengan gugus karboksil untuk melampirkan bagian penargetan atau obat. Diadaptasi dari [32]

AuNPs sebagai Agen Pengiriman Obat

Aplikasi AuNPs yang paling umum adalah sebagai pembawa pengiriman obat [11, 18, 52], vaksin [53] dan terapi gen [24, 32]. AuNPs memiliki sifat yang dapat menyelesaikan sebagian besar masalah yang terkait dengan terapi konvensional seperti resistensi obat, distribusi obat yang rendah, biodegradasi dan pembersihan obat awal [11]. AuNPs secara signifikan dapat mengurangi dosis obat, frekuensi pengobatan dan mampu mengangkut obat hidrofobik dan tidak larut. Mereka dianggap bio-inert dan dapat menutupi muatannya dari serangan sel-sel kekebalan, melindungi obat dari degradasi proteolitik saat mereka melakukan perjalanan melalui sistem peredaran darah, dan dengan demikian meningkatkan waktu sirkulasi obat. Faktor-faktor ini dapat dengan mudah meningkatkan kemanjuran obat dengan memusatkan dan mempertahankannya di jaringan yang sakit dengan sedikit atau tanpa efek pada jaringan normal [25].

Penggunaan AuNPs dalam pengobatan kanker telah dipelajari secara ekstensif [17, 37, 54], dan selama bertahun-tahun telah diperluas ke penyakit lain seperti obesitas [50, 55, 56] dan jerawat [18]. Sistem berbasis nano lebih kecil dari sebagian besar komponen seluler dan dapat secara pasif melintasi penghalang seluler dengan memanfaatkan efek peningkatan permeabilitas dan retensi (EPR) pada pembuluh darah jaringan yang sakit [25]. EPR dalam keadaan patologis ditandai dengan angiogenesis yang berlebihan dan peningkatan sekresi mediator permeabilitas, yang dapat meningkatkan penyerapan AuNP oleh jaringan yang sakit. Karakteristik ini hanya terkait dengan keadaan patologis dan bukan jaringan normal, yang memberikan peluang untuk penargetan selektif konjugat AuNP [25]. AuNPs menarik sebagai pembawa obat karena mereka dapat membawa banyak molekul secara bersamaan, semakin mendiversifikasi sifat mereka. Ini adalah sifat yang diinginkan dalam kedokteran di mana sebagian besar aplikasi bio AuNP berakar, karena AuNP dapat disesuaikan untuk fungsi biomedis tertentu. Ini dapat membantu mengontrol cara mereka berinteraksi dengan organel seluler dan oleh karena itu menjanjikan pengembangan masa depan modalitas diagnostik dan pengobatan yang efektif untuk berbagai penyakit [4].

Sistem Diagnostik Berbasis AuNP

Munculnya nanoteknologi telah meningkatkan pendirian dalam mengembangkan sistem deteksi yang cepat, kuat, sensitif dan sangat kompetitif dibandingkan dengan tes diagnostik konvensional [48]. Nanomaterials biasanya terintegrasi dalam platform biosensing yang ada untuk mendeteksi gas, DNA dan penanda protein yang terlibat dalam perkembangan penyakit [47]. Di antara berbagai nanomaterial (yang meliputi NP logam, polimer, magnetik dan semikonduktor) yang digunakan dalam diagnostik, AuNPs telah banyak digunakan dalam biosensor, sensor elektrokimia dan uji kromogenik untuk mendeteksi atau merasakan keberadaan biomarker penyakit [49]. SPR lokal mereka (LSPR), transfer energi resonansi fluoresensi (FRET), hamburan Raman yang ditingkatkan permukaan, konduktivitas, aktivitas redoks, dan efek pengisian terkuantisasi menjadikannya alat yang ideal untuk pencitraan dan deteksi molekul target [10, 24]. Sifat elektronik dan optiknya, dan kemampuan untuk menyebarkan cahaya tampak dan inframerah dekat (NIR) kompatibel dan terukur dengan berbagai teknologi seperti teknik mikroskopis (elektron, confocal, dan hamburan cahaya medan gelap) [57], computed tomography (CT) , Teknik pencitraan PT heterodyne, spektroskopi UV-Vis dan Raman [24, 35].

Pengembangan sistem diagnostik berbasis AuNP melibatkan modifikasi permukaan AuNP, misalnya, melalui perlekatan biomolekul yang mengenali biomarker penyakit [3, 24, 58]. Lateral flow assays (LFA) mungkin merupakan contoh paling terkenal dari alat diagnostik berbasis nanoteknologi. LFA biasanya menggunakan AuNP sekitar 30-40 nm karena partikel yang lebih kecil memiliki penampang kepunahan yang sangat kecil, sedangkan partikel yang lebih besar biasanya tidak stabil untuk digunakan dalam pengujian ini [59]. Selain itu, molekul/enzim lain yang dapat memicu perubahan SPR, konduktivitas, dan redoks AuNP juga disertakan. Indikator-indikator ini memberikan sinyal yang dapat dideteksi setelah pengikatan analit ke konjugat AuNP [24], kekurangan atau adanya sinyal kemudian akan mencerminkan tidak adanya atau adanya molekul target atau penyakit. Sinyal yang dihasilkan oleh AuNPs secara kimiawi stabil, tahan lama dan konsisten ketika digunakan dalam format uji yang berbeda:tabung reaksi, strip, in vitro dan in vivo [24]. Oleh karena itu, penerapannya telah sangat meningkatkan kecepatan dan keberhasilan uji diagnostik.

Uji Berbasis AuNP Kolorimetri

Dalam uji kolorimetri, AuNP menghasilkan sinyal visual (biasanya perubahan warna) yang dapat dideteksi dengan mata telanjang tanpa menggunakan instrumen canggih. Umumnya, larutan koloid AuNPs memiliki warna merah ruby ​​hingga warna anggur yang sangat bergantung pada jarak antar partikel [60, 61]. Pengikatan analit ke AuNPs yang dimodifikasi dengan elemen bio-recognition molekuler (misalnya, antibodi, peptida, aptamers, enzim, dll.) menginduksi pergeseran yang berbeda dalam LSPR, akibatnya menghasilkan perubahan warna dari merah ruby ​​menjadi biru [60 , 62, 63]. Intensitas warna berbanding lurus dengan konsentrasi analit dan digunakan untuk mengkonfirmasi keberadaan dan keadaan penyakit. Diagnostik kolorimetri berbasis AuNP telah berhasil digunakan dalam mendeteksi virus influenza A [64], virus Zika [65], Bakteriofag T7 [66], Mycobacterium tuberculosis [67], dan baru-baru ini, untuk mendeteksi sindrom pernapasan akut parah-coronavirus-2 (SARS-CoV-2) [60, 68].

Contoh uji kolorimetri berbasis AuNP ditunjukkan untuk mendeteksi SARS-CoV-2 [60], virus yang menyebabkan penyakit virus Corona 2019 (COVID-19) yang sangat menular [60, 68]. Dengan pengujian ini, keberadaan virus dilaporkan dengan perubahan warna yang sederhana; tidak ada instrumentasi yang diperlukan untuk melakukan diagnosis. Tes diagnostik klinis virus ini saat ini menggunakan uji reverse transcriptase real-time polymerase chain reaction (RT-PCR), yang memakan waktu 4–6 jam, sedangkan sistem rapid point-of-care (PoC) mendeteksi antibodi yang mungkin memerlukan waktu 4–6 jam. beberapa hari untuk muncul dalam darah. Sebagai perbandingan, uji berbasis AuNP kolorimetri lebih kuat dan lebih cepat seperti yang ditunjukkan pada Gambar. 3. Menginkubasi tag AuNP dengan antisense oligonucleotides (ASO) dengan adanya sampel RNA SARS-CoV-2 menghasilkan pembentukan endapan biru di dalam ~ 10 mnt. Dalam tes positif-SARS-CoV-2, pengikatan ASO ke gen-N dalam fosfoprotein nukleokapsid virus menginduksi warna biru yang terdeteksi secara visual. Tes ini sangat sensitif dan memiliki batas deteksi 0,18 ng/μL untuk RNA SARS-CoV-2 [60].

Sistem diagnostik kolorimetri berbasis AuNP. Deteksi mata telanjang selektif RNA SARS-CoV-2 oleh AuNPs yang dibatasi ASO. Direproduksi dengan izin [60]. Hak Cipta 2020, ACS Nano

LFA berbasis AuNP mengikuti prinsip yang sama seperti yang ditunjukkan pada Gambar 3; namun, alih-alih perubahan warna dalam larutan, garis yang terlihat terbentuk pada strip uji ketika ada analit. Di hadapan analit, AuNPs ditangkap pada garis uji dan membentuk garis merah yang berbeda, yang divisualisasikan dengan mata telanjang. Intensitas garis ditentukan oleh jumlah AuNP yang teradsorpsi [69]. Contoh LFA berbasis AuNP yang sederhana dan cepat ditunjukkan pada Gambar. 4, untuk mendeteksi Pneumocystis jirovecii (P.jirovecii ) antibodi IgM dalam serum manusia. AuNP 40 nm dikonjugasikan dengan antigen sintetik rekombinan (RSA) dari P. jirovecii , baik glikoprotein permukaan utama atau protease serin mirip kexin, yang digunakan sebagai indikator untuk ada tidaknya P. jirovecii . Dalam tes positif, P. jirovecii IgM ditangkap oleh konjugat AuNP-RSA pada bantalan konjugat. Kompleks AuNP-RSA/IgM kemudian mengalir ke membran analitik di mana ia mengikat IgM anti-manusia (garis uji) dan kelebihannya berpindah ke antibodi anti-RSA (garis kontrol), menghasilkan dua garis merah. Tes negatif hanya akan memiliki warna merah pada garis kontrol [70]. Sebuah studi independen menggunakan LFA berbasis AuNP untuk secara selektif mendeteksi IgM SARS-CoV-2 sebagaimana dikonfirmasi oleh munculnya garis merah di kedua garis uji dan kontrol [68]. Warna dideteksi secara visual dengan mata telanjang dalam waktu 15 menit di kedua sistem, dan hanya 10–20 μL sampel serum yang diperlukan per pengujian [68, 70].

LFA berbasis AuNP untuk mendeteksi IgM P. jirovecii antibodi. Ada (tes positif) atau tidak adanya (kontrol negatif) dari P. jirovecii antibodi dapat dibedakan dengan warna kemerahan AuNP di kedua jalur uji dan kontrol, atau hanya di jalur kontrol, masing-masing. Direproduksi dengan izin [70]. Hak Cipta 2019, Perbatasan dalam Mikrobiologi

Salah satu contoh pertama penggunaan AuNPs sebagai probe pensinyalan pada LFA adalah untuk mendeteksi sel Ramos; aptamer TE02 digunakan sebagai probe penangkapan dan aptamer TD05 sebagai probe deteksi. Biosensor aptamer-AuNP dapat secara visual mendeteksi minimal 4.000 sel Ramos tanpa instrumentasi apa pun dan 800 sel Ramos dengan pembaca strip portabel dalam waktu 15 menit. Menggunakan biosensor deteksi sandwich ini, pengujian berhasil mendeteksi sel Ramos yang dibubuhi darah manusia [71] dan digunakan sebagai bukti konsep untuk mengembangkan sistem yang cepat, sensitif, dan berbiaya rendah untuk deteksi kualitatif dan kuantitatif sel kanker yang bersirkulasi. Sejak itu, berbagai LFA berbasis AuNP telah dirancang untuk diagnosis berbagai penyakit menular, termasuk penyakit yang disebabkan oleh Pneumocystis pneumonia [70], virus Ebola [72], HIV, virus Hepatitis C, dan Mycobacterium tuberculosis [73] dan baru-baru ini virus SARS-CoV-2 [68].

Sistem Pencitraan Berbasis AuNP

AuNPs telah diselidiki secara intensif untuk aplikasi dalam bio-imaging karena kemampuannya untuk menyerap dan menyebarkan cahaya yang sesuai dengan panjang gelombang resonansinya, hingga 10 5 kali lebih dari fluorophores konvensional [74]. AuNP memiliki nomor atom dan kerapatan elektron yang lebih tinggi (79 dan 19,32 g/cm 3 ) dibandingkan dengan agen berbasis yodium konvensional (53 dan 4,9 g/cm 3 ), sehingga terbukti menjadi agen kontras yang lebih baik [24]. AuNPs menumpuk pada sel atau jaringan yang sakit dan menginduksi redaman sinar-X yang kuat membuat situs yang ditargetkan sangat berbeda dan mudah dideteksi. AuNPs melekat pada bagian kimia dan agen bio-rekognisi molekuler yang secara selektif dapat menargetkan antigen spesifik untuk menginduksi kontras yang berbeda dan target spesifik untuk pencitraan CT [75].

Sistem pencitraan CT molekuler yang ditargetkan secara in vitro dicapai dengan menggunakan AuNP yang difungsikan dengan RNA aptamer yang mengikat antigen membran spesifik prostat (PSMA). Konjugat aptamer AuNP-PSMA menunjukkan intensitas CT lebih dari empat kali lipat untuk sel prostat yang mengekspresikan PSMA (LNCaP) dibandingkan dengan sel prostat PC-3, yang tidak memiliki reseptor target [76]. Demikian pula, konjugat aptamer AuNP-diatrizoic acid-AS1411 dilokalisasi dalam sel CL1-5 (adenokarsinoma paru-paru manusia) dan tikus pembawa tumor CL1-5. Aptamer AS1411 menargetkan reseptor nukleolin (NCL) yang diekspresikan oleh sel CL1-5 pada permukaan sel, sedangkan asam diatrizoat adalah zat kontras berbasis yodium. Konjugat aptamer AuNP–diatrizoic acid–AS1411 memiliki kurva atenuasi linier dengan kemiringan 0,027 mM Au Hounsfield unit (HU −1 ) menunjukkan akumulasi AuNPs di lokasi tumor [77]. AuNPs menunjukkan waktu retensi vaskular yang lebih lama, yang memperpanjang waktu sirkulasi mereka dalam darah [77,78,79] dan meningkatkan sinyal CT asam diatrizoat [77].

Gambar 5 menunjukkan pencitraan vaskular CT in vivo arteri koroner menggunakan AuNPs yang terkonjugasi ke protein adhesi pengikat kolagen 35 (CNA35) untuk menargetkan kolagen I pada infark miokard pada hewan pengerat. Sinyal AuNP masih terdeteksi dalam darah 6 jam setelah pemberian intravena (i.v), yang secara signifikan lebih tinggi daripada waktu paruh (5-10 menit) agen berbasis yodium [79]. Efek-efek ini direplikasi dengan menggunakan AuNPs mannan-capped yang disintesis hijau, yang menunjukkan serapan yang dimediasi reseptor dan non-toksisitas dalam sel yang mengekspresikan mannose (DC 2.4 dan RAW 264.7). AuNPs mannan-capped selektif menargetkan kelenjar getah bening poplitea in vivo setelah injeksi ke kaki belakang tikus [38]. Pencitraan CT berbasis AuNP dapat memberikan informasi yang signifikan untuk diagnosis berbagai penyakit tidak terbatas pada arteri koroner dan kanker [76, 77, 79,80,81]. Penggunaan AuNPs sebagai agen kontras telah menunjukkan potensi dalam sistem pencitraan lain seperti fotoakustik, pencitraan nuklir, ultrasound dan pencitraan resonansi magnetik. Sistem ini ditinjau secara ekstensif di tempat lain [82, 83].

Pencitraan CT in vivo menggunakan AuNPs sebagai agen kontras CT. AuNPs Mannan-capped dan pencitraan CT mereka dari kelenjar getah bening (A ), dan pencitraan CT AuNPs terkonjugasi CNA35 dari beban parut miokard (B ). Direproduksi dengan izin [79]. Hak Cipta 2018, Elsevier

AuNP dalam Sistem Deteksi Berbasis Fluorescent

AuNP digunakan dalam sistem deteksi berbasis fluoresen sebagai agen fluoresen atau pemadam fluoresen. Pada ukuran ≤ 5 nm, AuNP menampilkan properti titik kuantum (QD) dan dapat digunakan sebagai gantinya. Au55 (PPh3 )12 Kl6 nanocluster diperkenalkan pada tahun 1981 mungkin yang paling intensif dipelajari karena perilaku ukuran kuantum mereka [7]. Sejak itu, berbagai AuNPs berukuran kuantum (AuNPsQ) seperti Au25 (SR)18 , Au38 (SR)24 dan Au144 (SR)60 [84] telah dipelajari sebagian besar dalam penginderaan elektrokimia karena mereka adalah konduktor elektronik yang sangat baik dan mediator redoks [85].

Elektroda film AuNPsQ digunakan dalam pembuatan imunosensor elektrokimia ultrasensitif untuk mendeteksi antigen spesifik prostat (PSA). Imunosensor memiliki sensitivitas 31,5 A mL/ng dan batas deteksi 0,5 pg/mL untuk PSA dalam 10 L serum manusia yang tidak diencerkan. Immunoassay berkinerja delapan kali lipat lebih baik daripada imunosensor hutan karbon nanotube yang dilaporkan sebelumnya yang mengandung banyak bagian, pada konsentrasi biomarker yang lebih rendah daripada tingkat yang terkait dengan keberadaan kanker. Dengan demikian, dapat digunakan untuk mengukur biomarker uji baik dalam keadaan normal maupun sakit. Kinerja imunosensor sebanding dengan metode ELISA referensi [86]. AuNPsQ juga dimasukkan ke dalam CaCO yang berstruktur berpori3 bola untuk membentuk CaCO fluoresen3 /AuNPsQ hybrid untuk mendeteksi enolase spesifik neuron, biomarker diagnostik dan prognostik untuk cedera otak traumatis dan kanker paru-paru. Sensor memiliki batas deteksi 2.0 pg mL −1 [87]. Sampai saat ini, beberapa sistem deteksi fluoresen berbasis AuNP telah dilaporkan untuk mendeteksi analit yang terkait dengan Hepatitis B [73, 88], Influenza A [89], kanker [90] dan cedera jantung [91].

AuNP juga merupakan quencher berbasis FRET yang sangat baik [92]. Sifat optiknya yang unik (intensitas sinyal yang stabil dan ketahanan terhadap photobleaching), ukuran dan kemampuan untuk dimodifikasi telah membuatnya menjadi probe yang menarik dalam platform penginderaan fluoresensi [93, 94]. AuNP yang lebih besar (≥ 10–100 nm) memiliki hasil kuantum rendah yang tidak cocok untuk penginderaan fluoresen langsung; namun, kemampuannya untuk memadamkan pewarna fluoresen di bawah keadaan energi eksitasi yang relatif tinggi telah menjadikannya sebagai pemadam fotoluminesensi yang efektif [94]. Pada prinsipnya, nanoprobe fluoresensi terdiri dari donor fluorofor (pewarna atau QDs) dan akseptor AuNPs, dan ketika dibawa ke dekat, fluoresensi dari fluorofor yang dipilih dipadamkan oleh AuNPs [94, 95]. Dengan tidak adanya target seperti yang ditunjukkan oleh kurangnya sinyal fluoresen, probe asam nukleat berhibridisasi dan membentuk struktur melingkar yang membawa fluorofor dan quencher pada ujung yang berlawanan menjadi dekat; sementara pengikatan analit ke probe asam nukleat menggantikan fluorofor dari AuNPs yang menghasilkan sinyal fluoresen [24, 94, 96]. Mengambil keuntungan dari sifat-sifat yang disebutkan di atas, AuNP digabungkan dalam suar molekuler untuk deteksi in vitro (nanosfer emas, AuNSs) dan in vivo (nanorod emas, AuNRs) dari ekspresi matriptase pada sel tumor. Dua suar molekuler terdiri dari situs pembelahan matriptase sebagai penghubung antara AuNP dan fluorofor. Suar molekuler AuNS dibuat dengan fluorescein isothiocyanate (FITC), dan suar molekuler AuNR memiliki pewarna fluoresen NIR (asam merkaptopropionat, MPA). In the absence of the target, the AuNSs and AuNRs, respectively, blocked the FITC and MPA fluorescence. Cleavage of either FITC or MPA from the AuNP–molecular beacons in the presence of matriptase exhibited a quantifiable fluorescence signal. The fluorescent signal of the MPA–AuNR–beacon in the nude mice bearing HT-29 tumors lasted for 14 h in the tumor site, while the signal gradually disappeared from the non-tumor site over time [97].

The AuNPs were reported to have comparable or higher fluorescence quenching efficiency than organic quenchers such as 4-((4′-(dimethyl-amino)phenyl)azo)benzoic acid (DABCYL) [94, 98] and Black Hole Quencher-2 [99]. The fluorescence quenching efficiency of 1.4 nm AuNPs was compatible with the four commonly used organic fluorophores (FITC, rhodamine, texas red and Cy5). The fluorescence quenching efficiency of the AuNPs was similar to that of DABCYL, and unlike DABCYL, the AuNPs showed consistency in both low and high salt buffers [98]. In a competitive hybridization assay, 10 nm AuNPs showed superior (> 80%) fluorescence quenching efficiency for Cy3 dye than the commercial Black Hole Quencher-2 (~ 50%). The assay had a limit of detection of 3.8 pM and a detection range coverage from 3.8 pM to 10 nM for miRNA-205 in human serum, and it was able to discriminate between miRNAs with variations in their nucleotide sequence [99]. The competitive sensor arrays were not only sensitive [96, 99] but were able to differentiate between normal and diseased cells, as well as benign and metastatic cancers [96].

AuNP-Based Bio-barcoding Assay

AuNP-based bio-barcoding assay (BCA) technology has become one of the highly specific and ultrasensitive methods for detection of target proteins and nucleic acids up to 5 orders of magnitude than the conventional assays [100]. The assay relies on magnetic microparticle probes, which are functionalized with antibodies that bind to a specific target, and AuNP probes encoded with DNA that recognizes the specific protein target and antibodies. Upon interaction with the target DNA, a sandwich complex between the magnetic microparticle and AuNPs probes is formed. The sandwich is then separated by the magnet followed by thermal dehybridization to release the free bar-code DNA, enabling detection and quantification of the target [101, 102].

The AuNP-based BCA assay was able to detect HIV-1 p24 antigen at levels that was 100–150-fold higher than the conventional ELISA [103]. The detection limit of PSA using these systems was 330 fg/mL [104]. The versatility of AuNPs for the development of a BCA-based platform was further demonstrated by measuring the concentration of amyloid-beta-derived diffusible ligands (ADDLs), a potential Alzheimer's disease (AD) marker found in the cerebrospinal fluid (CSF). ADDL concentrations were consistently higher in the CSF taken from the subjects diagnosed with AD than in non-demented age-matched controls [105]. These results indicate that the universal labeling technology can be improved through the use of AuNPs to provide a rapid and sensitive testing platform for laboratory research and clinical diagnosis.

AuNP-Based Therapies

Metal-based drugs are not new to medicine; in fact, they are inspired by the existing metallic drugs used in clinical treatment of various diseases [9, 106,107,108,109]. The widely studied and clinically used metal-based drugs were derived from platinum (e.g., cisplatin, carboplatin, tetraplatin for treatment of advanced cancers), bismuth (for the treatment of infectious and gastrointestinal diseases), gold (for the treatment of arthritis) and gallium (for the treatment of cancer-related hypercalcemia) [108, 109]. The approval of cisplatin in 1978 by the FDA for the clinical treatment of cancer [107] further inspired research on other metals (such as palladium, ruthenium, rhodium) [32, 106, 110].

Owing to the bioactivities, which included anti-rheumatic, antibacterial and anticancer effects, and the biocompatibility of bulk gold [8, 9, 46, 111], AuNPs are extensively investigated for the treatment of several diseases. AuNPs displayed unique and novel properties that are superior to its bulk counterpart. AuNPs are highly stable and have a distinct SPR, which guides their application in medicine [112], as drug delivery and therapeutic agents. AuNPs have a lot of advantages over the conventional therapy; they have a longer shelf-life and can circulate long enough in the system to reach their targets [25] with [11, 49, 113] or without targeting molecules [14, 15, 24, 25, 114]. AuNPs can provide localized and selective therapeutic effects; some of the areas in which AuNPs were used in therapy are described below.

Therapeutic Effects of Untargeted AuNPs

The as-synthesized (i.e., unmodified or uncapped) AuNPs have been shown to have diverse therapeutic effects against a number of infectious [115, 116], metabolic and chronic diseases [3, 29, 50, 51]. Their antioxidant, anticancer, anti-angiogenic [3, 32], anti-inflammatory [3, 51] and weight loss [29, 50, 112] effects are beneficial for diseases such as cancer, rheumatoid arthritis, macular degeneration and obesity [5, 25, 113, 117]. The above-mentioned diseases are characterized by a leaky vasculature and highly vascularized blood vessels [5, 113], which provides the NPs an easy passage into the diseased tissues and increase the susceptibility of cells to their effects. Through the EPR effect, uncapped AuNPs can passively accumulate in the vasculature of diseased cells or tissues. Hence, AuNPs have been specifically designed to have anti-angiogenic effects in diseases where angiogenesis (the growth and extension of blood vessels from pre-existing blood vessels) spins out of control like cancer, rheumatoid arthritis, macular degeneration and obesity [5, 25, 113, 117]. Targeting and destroying the defective blood vessels prevent oxygen and nutrients from reaching the diseased cells, which results in their death. The pores in the blood vessels at the diseased site (especially in cancer and obesity) are 200–400 nm and can allow materials in this size range to pass from the vasculature into the diseased tissues and cells [14, 15, 25, 114].

The cellular uptake, localization, biodistribution, circulation and pharmacokinetics of the uncapped AuNPs rely strongly on size and shape [49]. Although these effects are applicable to all AuNPs, the biological effects of citrate-capped AuNPs (cAuNPs) are extensively studied and reviewed. Spherical cAuNPs demonstrated selective in vitro anticancer activity that was size and concentration dependent on murine and human cell lines [3, 51]. Different sizes (10, 20 and 30 nm) of cAuNPs showed differential effects in human cervical carcinoma (HeLa), murine fibroblasts (NIH3T3) and murine melanoma (B16F10) cells. The 20 and 30 nm cAuNPs showed a significant cell death in HeLa cells starting at the lowest concentration of 2.2 µg/mL, while the 10-nm NPs was toxic at concentrations ≥ 8.75 µg/mL. The activity of these NPs was negligible in the noncancerous NIH3T3 cells, especially the 10 and 20 nm. The 20 nm reduced viability by ≤ 5% at the highest concentration (35 µg/mL), and ~ 20% for the 10 and 30 nm. The IC50 values for 10, 20 and 30 nm cAuNPs in the Hela cells were 35, 2.2 and 4.4 μg/mL, respectively, while the IC50 values for noncancerous cells were higher than 35 µg/mL [3]. Using a concentration range of 0.002–2 nM, 13 nm cAuNPs induced apoptosis in rabbit articular chondrocytes and no effects were observed for 3 and 45 nm cAuNPs under the same conditions. The 13 nm cAuNPs induced mitochondrial damage and increased reactive oxygen species (ROS); these actions could not be blocked by pre-treatment with a ROS scavenger, the N-acetyl cysteine [51]. Size-dependent effects were also observed in vivo after injecting cAuNPs of various sizes (3, 5, 8, 12, 17, 37, 50 and 100 nm) into mice (8 mg/kg/week) for 4 weeks. The 8, 17, 12 and 37 nm were lethal to the mice and resulted in tissue damage and death after 14 days of treatment; the other sizes were not toxic and the mice survived the experimentation period. On the contrary, the same-size AuNPs at a concentrations up to 0.4 mM were not toxic to HeLa cells after 24 h exposure [118].

The cAuNPs can interact and accumulate nonspecifically within various tissues and organs in the body, especially in the reticuloendothelial system (RES) organs (blood, liver, spleen, lungs) [55, 119]. This was evident in high-fat (HF) diet-induced obese Wistar rats [55] and Sprague–Dawley rats [119] following acute (1 dose for 24 h) [55] and chronic (1 dose; 0.9, 9 and 90 µg/week over 7 week period) [119] exposure to 14 nm cAuNPs, respectively. Majority of the i.v injected cAuNPs were detected in the liver, spleen, pancreas, lungs, kidneys [55, 119] including the skeleton and carcass of the rats [119]. Chen et al. observed that after intraperitoneal (i.p) injection of a single dose (7.85 µg/g bodyweight) of 21 nm cAuNPs in lean C57BL/6 mice, they accumulated in the abdominal fat tissues and liver after 24–72 h [29], as well as the spleen, kidney, brain and heart in the HF-induced obese mice that were injected with the same dose daily for 9 weeks [50]. The cAuNPs reduced the abdominal WATs (retroperitoneal and mesenteric) mass and blood glucose levels 72 h post-injection [29]. In the diet-induced obese mice, the 21 nm cAuNPs demonstrated anti-inflammatory and anti-obesity effects [50]. They also improved glucose tolerance, enhanced the expression of inflammatory and metabolic markers in the retroperitoneal WATs and liver [50]. Both the 14 and 21 nm cAuNPs showed no sign of toxicity or changes in the markers associated with kidney and liver damage [29, 55, 119].

Similar findings were reported for plant-mediated AuNPs, without targeting molecules they can access, ablate tumors [40, 120] and obese WATs [121] in rodents. Differential uptake, distribution and activity of biogenic AuNPs also vary depending on the size and shape of the NPs. While certain sizes can pass through the vascular network and be retained at the site of the disease; others can be easily filtered out of the system through the RES organs and the mononuclear phagocytic system as shown in Fig. 6 [15, 114]. NPs can be removed by tissue-resident macrophages (TRMs) before they reach the disease cells. Those that escape the TRMs and do not reach the disease site, especially smaller NPs (≤ 5 nm), are excreted through glomerular filtration in the kidney [25, 114]. Pre-treatment with clodronate liposomes depleted the TRMs in the liver and spleen before exposure to 50, 100 and 200 nm AuNPs. This reduced uptake of the AuNPs by the liver, increased their half-life in the blood as well as their accumulation at the tumor site [122]. However, TRMs are not the only obstacle that the AuNPs that rely on EPR effect for uptake must overcome. EPR effect alone can only ascertain ≤ 1% AuNP uptake [15, 114], and depletion of the TRMs prior to treatment resulted in just ≤ 2% of NPs reaching the target [122]. The success of non-targeted AuNPs depends on their ability to reach and accumulate in the diseased tissues, of which passive targeting through the EPR effect might not be efficient. The NPs also need to circulate longer, escape early clearance, and most importantly show reduced bystander effects [25, 123]. These qualities can increase bioavailability and ensure selectivity and efficacy of the AuNPs. These can further be improved by changing the surface chemistry of the AuNPs as discussed below [15, 124].

RES-based clearance of systemic administered AuNPs depends on their size. Large AuNPs accumulate in the liver, while smaller AuNPs are likely to end up in the spleen or be excreted in the urine via glomerular filtration. The AuNPs that escape the TRMs could accumulate in the diseased tissues. Reproduced with permission [114]. Copyright 2019, Frontiers in Bioengineering and Biotechnology

Therapeutic Effects of Surface-Functionalized AuNPs

The common strategy in AuNP-based therapeutics involves modifying the AuNP surface with therapeutic agents [3, 124,125,126]. The therapeutic agents can be drugs already used for the treatment of a particular disease or biomolecules with known inhibitory effects on cell signaling. In some instances, the therapeutic AuNPs have also been designed to have molecules that facilitate active targeting of the AuNPs toward specific cells and tissues. The molecules can easily adsorb on the AuNP surface by thiolation, chemical modification using chemistries such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), streptavidin/biotin binding [3, 124,125,126,127] and ionic interactions based on opposite charges between the NP surface and the biomolecules [124,125,126]. Functionalization of the AuNP surface influences their physicochemical properties and can affect their safety, biocompatibility and mobility. To ensure that the cargo carried by the AuNPs is delivered to the intended site, consideration should thus be given to both the physical and chemical properties of the AuNPs [124,125,126]. It is especially the size, shape, charge and the capping agents of the AuNPs that play an important role in the functionality of the AuNP conjugates [124] and can completely alter the pharmacokinetics of the AuNP-based therapeutics.

Functionalization allows for the development of customized nanosystems to reduce undesirable bystander effects often associated with traditional medicine. Functionalization of AuNPs can also prevent nonspecific adsorption of proteins onto the AuNP surface which can result in the formation a protein corona, resulting in the early clearance of the AuNPs through opsonization by the phagocytic cells [49, 123]. The surface charge of NPs can have a major influence on the behavior of NPs within biological environments. AuNPs with a neutral surface charge are unreactive and have a higher rate of escaping opsonization than charged AuNPs. Hydrophilic NPs will also behave differently to those with hydrophobic surfaces [49, 123]. PEG is one of the polymers most often used to mask AuNPs from phagocytic cells and has been shown to stabilize and enhance the biocompatibility of the AuNPs in numerous in vivo studies [49, 55, 123]. Pegylation improved the biocompatibility of 8.2 nm AuNPs by preventing neutrally and negatively charged AuNPs to bind to cell membranes or localize to any cellular components in African green monkey kidney (COS-1) cells [49]. And when the pegylated AuNPs were functionalized with a polyarginine cell penetrating moiety, the AuNPs were visualized on the cell membrane and inside the COS-1 cells [49]. Cell-penetrating peptides such as nuclear localization signal from SV40 virus, Tat from HIV and polyarginine peptides have been explored in translocation of AuNPs inside all cell type, normal or diseased. However, high specificity is required for clinical applications and can be achieved by taking advantage of the physiological differences between malignant and normal cells. This has been achieved by functionalizing the AuNPs with targeting molecules that recognize cell-specific receptors that are exclusively or overexpressed on the surface of target cells. This way, the AuNPs can be directed and delivered only to cells that express the target receptor. Therefore, conjugation of targeting moieties to the AuNPs (active targeting) will provide more selectivity, reduced bystander toxicity and enhanced efficacy since the AuNPs will be confined only to malignant tissues that express the target receptors [49, 55, 57, 113, 126, 127].

A good example to demonstrate the versatility of AuNPs is shown in Fig. 7, where four different molecules were conjugated onto the AuNPs to target two independent markers and mechanisms [11]. The multifunctional AuNPs were used for the treatment of leukemia (K562DR) cells that are resistant to doxorubicin (Dox). The 40 nm AuNPs were modified with two targeting moieties (folate and AS1411 aptamer) and two therapeutic agents (Dox and anti-miRNA molecules/anti-221). Folate molecule and AS1411 aptamer, respectively, recognize the folate and NCL receptors that are overexpressed on the cell surface and through receptor-mediated endocytosis will traffic the AuNP-conjugate into the cells. The AS1411 aptamer had dual functions, by also targeting the NCL receptor that is expressed inside the cells. After the AuNP-conjugate has been shuttled into the cells, the cargo (AS1411 aptamer, anti-221 and Dox) is off-loaded which independently act on three mechanisms that will synergistically bring about the demise of the cells. AS1411 aptamer together with anti-221 prevented leukemogenesis by suppressing the endogenous NCL and miR-221 function in the NCL/miR-221 pathway, thereby sensitizing the cells to the effects of Dox [11].

Multifunctional AuNPs in the treatment of multidrug-resistant (MDR) leukemia cells by increasing the sensitivity of the cells to Dox. Reproduced with permission [11]. Copyright 2019. Springer Nature. Folate (FA) receptor

Interestingly, similar dual targeting and treatment effects were achieved with green synthesized AuNPs without any additional molecules. With natural products acting as reducing agents, the biogenic AuNPs might also be more biocompatible than the chemically synthesized NPs [12, 40, 41, 43, 120]. MGF-AuNPs selectively targeted the laminin receptors in prostate (PC-3) and triple-negative breast cancer (MDA-MB-231) cells, and their xenografts in severe combined immunodeficiency (SCID) mice bearing these tumors [12, 40, 120]. In the normal SCID mice, the majority (85% at 30 min increasing to 95% after 24 h) of the i.v-injected MGF-AuNPs accumulated in the liver. Less than 10% were detected in the blood (2.7%), spleen (5%), lungs (0.6%), stomach, intestines and kidneys. When intra-tumorally injected in SCID mice-bearing prostate tumors, only 11% of the MGF-AuNPs were detected in the liver 24 h post-injection, while ~ 80% was in the tumor. Negligible amounts were found in the stomach, carcass and the small intestines. Some of the AuNPs were excreted through the renal and hepatic pathways in the urine and feces after 24 h [40, 120]. Nano Swarna Bhasma, a mixture consisting of AuNPs synthesized from mango peel extracts and phytochemicals from mango, turmeric, gooseberry and gum arabic, showed reduced toxicity toward normal endothelial cells after 48 h compared to the MDA-MB-231 cells [12].

Several studies have demonstrated that AuNPs have potential for clinical application. In combination with conventional drugs, it can be used to sensitize diseased cells to the drug effects [12, 128] and also prevent or reduce drug-related bystander effects [12]. AuNPs improved the pharmacokinetics of chemotherapeutic drugs, such as Dox [43, 129] and 5-fluorouracil (5-FU) [128]. Great improvements were mostly seen in the permeability and retention of drugs in the diseased cells, resulting in enhanced efficacy [130]. Dox-loaded AuNPs, which were non-toxic toward normal mouse fibroblast (L929) cells, also demonstrated selective toxicity toward fibrosarcoma tumors in mice [129]. 5-FU conjugated to the cAuNPs had better activity than 5-FU on its own in colorectal cancer cells [128]. AuNP co-treatment with chemotherapeutic drugs was highly efficient in improving the efficacy of chemotherapeutic drugs [12, 43, 128, 129, 131]. Orally ingested Nano Swarna Bhasma in combination with Dox and Cyclophosphamide reduced tumor volumes in SCID mice-bearing breast tumor cells and also showed acceptable safety profile and reduced bystander effects of the chemotherapeutic drugs in stage IIIA/B metastatic breast cancer patients [12]. Active targeting alone can ensure that the AuNPs are directly delivered into the desired targets, achieving a balance between efficacy and toxicity while minimizing damage to healthy tissues [14, 15, 49]. Controlled drug release is also among the many advantages offered by the AuNP-based systems and is crucial as it allows for localized and selective toxicity [49]. The AuNPs can be designed in such a way that their conjugates respond to internal (glutathione displacement, enzyme cleavable linkers, pH) or external (light, heat) stimuli to function [24, 25, 34, 128].

AuNPs as Transfection Agents in Gene Therapy

The use of AuNPs in gene therapy has shown promising outcomes by facilitating the delivery of genetic material to cells to silence or enhance expression of specific genes [24, 32, 132]. Thus, AuNPs can be used as transfection reagents in gene therapy for the treatment of cancer and other genetic disorders. AuNP conjugates have demonstrated higher transfection efficiency than experimental viral and non-viral gene-delivery vectors including polycationic reagents that has been approved for clinical use [24].

AuNPs are highly conductive and well suited for use as microelectrodes during electroporation for intracellular delivery of biomolecules for disease treatment. AuNPs significantly enhanced the performance of electroporation systems and have been used successfully for the delivery of DNA into hard-to-transfect cells such as the K562 cells [133]. To prevent cell loss which is often associated with electroporation, targeting moieties can be conjugated to the AuNPs to facilitate cellular uptake of AuNP conjugates through receptor-mediated mechanisms [133]. The use of AuNPs to transfect cells with oligonucleotide molecules also has the added advantage of increasing the half-life of these biomolecules and their efficacy [24, 32].

Untargeted AuNP conjugates are passively transported into cells and rely on the surface charge and AuNP shape for efficient transfection [24, 36, 134, 135]. The charge of the biomolecules that are conjugated onto AuNP surface plays a crucial role in their transfection efficiency; for instance, AuNPs functionalized with cationic molecules produce higher transfection efficiency than AuNPs functionalized with anionic molecules. Positively charged amino acids (lysine) can be attached on the NP surface to increase the rate of transfection. AuNSs [24] and AuNRs [36, 134, 135] are commonly used for transfections, and relative to the conventional transfection reagents (X-tremeGENE and siPORT), they inhibited the expression of target gene by > 70% in vitro [134] and in vivo [135]. In these studies, transfection efficiency was quantified based on target expression using RT-PCR and immunostaining [134, 135]. As transfection reagents, AuNPs provide long-lasting effects, localized gene delivery and higher efficacy [36, 134, 135]. Other types of nanomaterials (e.g., polymeric, liposomes, ceramic and carbon nanotubes) had received more attention for use in gene therapy than AuNPs. Six clinical trials using either polymeric or lipid-based nanomaterials for delivery of siRNA in solid tumors have been completed [36, 134, 136]. All of which suffer from low loading efficiency, low stability, and insufficient payload release [36, 136]. On the other hand, transfection systems based on AuNPs make use of easy chemistry that ensures efficient loading capacity and formation of stable complexes [36, 135]. Their safety can be controlled by manipulating their shape, size distribution and surface composition [36].

Antimicrobial Effects of AuNPs

MDR microbes are a major health concern and a leading cause of mortality, worldwide [21, 137,138,139,140,141]. These microorganisms have become resistant to conventional antimicrobial agents, due to over-prescription and misuse of these drugs [142]. No new antibiotics have been produced in over 40 years, mainly because the big pharmaceutical companies have retreated from their antibiotic research programs due to the lack of incentives [143]. As such, new and effective antimicrobial agents are urgently required to combat what could be the next pandemic, the antimicrobial resistance, and avoid surge in drug-resistant infections.

AuNPs are among the new generation of antimicrobial agents under review. They have shown broad antimicrobial (bactericidal, fungicidal and virucidal) effects against a number of pathogenic and MDR microorganisms and thus have potential to overcome microbial drug resistance [21, 142, 144]. Their antimicrobial effects are dependent on their physicochemical properties, especially their size, surface composition, charge and shape [21, 144]. Due to their small size, AuNPs can easily pass through the bacterial cell membrane, disrupt their physiological functions and induce cell death [35]. The exact antimicrobial mechanisms of AuNPs are not yet fully elucidated; despite this, some of the reported modes of actions that results from the interaction of various nanostructured materials (NSMs) with the bacterial cells are illustrated in Fig. 8. The highlighted mechanisms are also implicated in antimicrobial activity of AuNPs, they include induction of microbial death through membrane damage, generation of ROS and oxidative stress, organelle dysfunction, and alteration of gene expression and cell signaling [141].

Antimicrobial mode of actions of the NSMs. Various NSMs can induce cell death by altering various biological functions, X represents alteration of cell signaling by de-phosphorylation of tyrosine residues in proteins as one of the mechanisms. Reproduced with permission [141]. Copyright 2018, Frontiers in Microbiology

AuNPs have multiple roles to play toward the development of antimicrobial agents, aside from being antimicrobial agents by themselves; they can serve as drug sensitizers and drug delivery vehicles [35, 58, 132, 145]. These features are applicable to both the chemical and green synthesized AuNPs, which have been reported to have antimicrobial effects against a number of human [21, 145,146,147] and waterborne [148] pathogenic strains. Generally, the test bacteria had shown low susceptibility toward the chemically synthesized AuNPs, i.e., the cAuNPs [21, 146, 147] and the NaBH4 -reduced AuNPs [149]. This was due to the repulsive forces between the negative charges on the AuNP surfaces and bacterial cells, thus preventing the interaction between AuNPs and the bacteria [21]. The activity of chemically synthesized AuNPs is based on their size, shape, concentration and exposure time. As an example, one study reported that NaBH4 -reduced AuNPs had no activity against Staphylococcus aureus (S. aureus ) and Escherichia coli (E. coli ) at 500 µg/mL for the duration of 6 h [149]. In contrast, another study showed a significant dose (1.35, 2.03 and 2.7 μg/mL) and size (6–34 nm vs 20–40 nm) dependent antibacterial effects of the NaBH4 -reduced AuNPs on Klebsiella pneumonia , E. coli , S. aureus and Bacillus subtilis [145].

The AuNPs are either used alone or in combination with other antimicrobial agents to treat microbial infections [35, 58, 132, 145]. When used in combination with other antimicrobial agents, the AuNP conjugates resulted in synergistic antimicrobial effects that surpassed the individual effects of the AuNPs and drugs [21, 35, 58, 132, 150]. These drugs were conjugated onto the AuNPs by either chemical methods [4, 151] or the drugs were used as reducing and capping agents [21, 149]. By so doing, the AuNPs improved drug delivery, uptake, sensitivity and efficacy. Some of the FDA-approved antibiotics and non-antibiotic drugs that were loaded onto the AuNPs are shown in Table 1 [4, 21, 149, 152]. Ciprofloxacin [152], cefaclor [149], lincomycin [4], kanamycin [21], vancomycin, ampicillin [151] and rifampicin [32] are among the antibiotics loaded on the AuNPs and demonstrated the versatility of AuNPs. These strategies were successful with various sizes and shapes of AuNPs, including gold silica nanoshells [152], AuNP-assembled rosette nanotubes [151] and AuNPs encapsulated in multi-block copolymers [153]. For instance, cefaclor-reduced AuNSs inhibited the growth of S. aureus and E. coli within 2–6 h depending on the concentration (10–50 µg/mL), while complete bacterial growth inhibition by the drug alone was only observed at 50 µg/mL after 6 h. The minimum inhibitory concentration (MIC) of the treatments was 10 µg/mL and 50 µg/mL for cefaclor-AuNPs and cefaclor, respectively [149].

AuNPs have presented properties that make them ideal candidates as alternative antimicrobial agents; the most important being their broad antimicrobial activity [21, 35, 58, 132, 150]. Owing to their biocompatibility and easily modifiable surface, microorganisms are less prone to developing resistance toward AuNPs [21]. For example, the kanamycin (Kan)-resistant bacteria (S . bovis , S . epidermidis , E . aerogenes , P . aeruginosa and Y . pestis ) showed increased susceptibility toward Kan-reduced AuNPs. The MIC values for Kan-AuNPs on the test bacteria were significantly reduced to < 10 µg/mL when compared to the MIC values for Kan alone at 50–512 µg/mL. This shows that AuNPs can restore the potency of antibiotics toward the drug-resistant strains by facilitating the uptake and delivery of the antimicrobial agents [21]. AuNPs can enhance drug-loading capacity and control the rate at which the drugs are released. AuNP hybrids with the multi-block copolymers increased the loading capacity of rifampicin and the drug’s half-life to 240 h. By sustaining the drug in the system for that long, ensured slow release of rifampicin from AuNPs at the target sites after oral administration of the AuNP conjugates to rats for 15 days. The drug on the surface was released within 24 h followed by the drug trapped in the polymer matrix after 100 h. And lastly, the drug entrapped between the AuNPs and the polymer matrix took over 240 h to be released in the interstitial space [153].

The AuNP hybrids also allow for the conjugation of multiple molecules with independent but synergistic functions. This was demonstrated by co-functionalization of the AuNPs with antimicrobial peptide (LL37) and the pcDNA that encode for pro-angiogenic factor (vascular endothelial growth factor, VEGF) and used in the treatment of MRSA-infected diabetic wounds in mice [132]. The AuNPs served dual functions, as a vehicle for the biomolecules, and also as transfection agent for the pcDNA. After topical application of the AuNP conjugates on the wound, the LL37 reduced MRSA colonies, while the pcDNA promoted wound healing by inducing angiogenesis through the expression of VEGF [132].

AuNPs have been shown to confer activity and repurpose some non-antibiotic drugs toward antimicrobial activity. The examples of repurposed drugs, which were used for the treatment of diseases other than bacterial infections, include 5FU [58], metformin [147] and 4,6-diamino-2-pyrimidinethiol (DAPT) [13, 112]. AuNPs as drug carriers are able to transport the drugs into the cells and allow direct contact with cellular organelles that resulted in their death [58, 147]. 5FU is an anti-leukemic drug, when attached to AuNPs was shown to kill some bacterial (Micrococcus luteus , S. aureus , P. aeruginosa , E. coli ) and fungal (Aspergillus fumigatus , Aspergillus niger ) strains [58]. While bacteria are resistant to DAPT, DAPT-AuNPs displayed differential antibacterial activity against the Gram-negative bacteria. Furthermore, conjugation of non-antibiotic drugs (e.g., guanidine, metformin, 1-(3-chlorophenyl)biguanide, chloroquine diphosphate, acetylcholine chloride, and melamine) as co-ligands with DAPT on AuNPs exerted non-selective antibacterial activity and a two–fourfold increased activity against Gram-negative bacteria [13]. When used in vivo, orally ingested DAPT-AuNPs showed better protection by increasing the intestinal microflora in E. coli -infected mice. After 4 weeks of treatment, the DAPT-AuNPs cleared the E. coli infection with no sign of mitochondrial damage, inflammation (increase in firmicutes ) or metabolic disorders (reduction in bacteroidetes ) in the mice [112].

The virucidal effects of the AuNP-based systems have been reported against several infectious diseases caused by influenza, measles [154], dengue [155, 156] and human immunodeficiency [115] viruses. Their anti-viral activity was attributed to the ability of AuNPs to either deliver anti-viral agents, or the ability to transform inactive molecules into virucidal agents [154, 156]. AuNPs synthesized using garlic water extracts inhibited measles viral growth in Vero cells infected with the measles virus. When the cells were exposed to both the virus and AuNPs at the same time, they blocked infection of Vero cells by the measles virus [154]. The AuNPs were nontoxic to the Vero cells up to a concentration of 100 µg/mL but inhibited viral uptake by 50% within 15–30 min at a concentration of 8.8 μg/mL [154]. Based on the Plaque Formation Unit assay, the viral load was reduced by 92% after 6 h exposure to 8.8 μg/mL of the AuNPs. The AuNPs interacted with the virus directly and blocked its transmission into the cells [154]. Modification of the AuNP surface with ligands that bind to the virus [156] or anti-viral agents [115, 155] protected them from degradation, enhanced their uptake and delivery onto the cells. The charge of the AuNPs also played a role, with cationic AuNPs being more effective in the delivery and efficacy of the AuNPs than the anionic and neutrally charged NPs. Cationic AuNPs complexed with siRNA inhibited dengue virus-2 replication in dengue virus-2-infected Vero and HepG-2 cells and also the virus infection following pre-treatment of the virus with AuNPs [155]. Inactive molecules are transformed into highly potent anti-viral agents after conjugation to AuNPs. One such example is the transformation of SDC-1721 peptide, a derivative of TAK-779, which is an antagonist of CCR5 and CXCR3 receptors for HIV-1 strain. SDC-1721 has no activity against the HIV-1, but when conjugated to the AuNPs it inhibited HIV-1 infection of the human phytohemagglutinin-stimulated peripheral blood mononuclear cells. The inhibitory effects of SDC-1721-AuNPs were comparable to the TAK-779 [115].

AuNPs as PT Agents

Diseased cells are sensitive to temperatures above 40 °C; cancer cells in particular appear to be even more sensitive to these high temperatures. Studies have shown that high fevers in cancer patients either reduced the symptoms of cancer or completely eradicated the tumors as a result of erysipelas infections [33, 157, 158]. Historically, fevers induced by bacterial infections, hot desert sand bath, or hot baths were used to increase the body temperature in order to kill the cancer cells [157]. These findings gave birth to PT therapy (PTT), which is mostly used for the treatment of cancer. PTT makes use of organic photosensitizers (indocyanine green, phthalocyanine, heptamethine cyanine) that are irradiated by the external source to generate heat energy that will increase the temperature to 40–45 °C (hyperthermia) in the target cells. Hyperthermia then triggers a chain of events (such as cell lysis, denaturation of the genetic materials and proteins), resulting in the destruction of the diseased cells [57, 158,159,160].

The organic dyes are used alone, or in combination with chemotherapy and radiotherapy for enhanced efficacy [157, 160]. Ideally, the effects of the PT agents must be confined to target cells and display minimal bystander effects. However, the organic PT dyes have several limitations such as toxic bystander effects, susceptibility to photobleaching and biodegradation [159]. In recent years, AuNPs are being explored as alternative PT agents as they exhibit strong plasmonic PT properties, and depending on their shape, they can absorb visible or NIR light. Absorption of light in the NIR spectrum is an added advantage that can allow deep tissue PTT [158, 161, 162]. Unlike organic dyes, AuNPs operate in an optical window where the absorption of light by interfering biological PT agents such as hemoglobin, melanin, cytochromes and water is very low [158, 161, 162].

The practicality of AuNP-based PTT has been demonstrated through in vitro and in vivo studies [158, 162, 163]. When the AuNPs are exposed to light, they can convert the absorbed light energy into thermal energy within picoseconds [57, 158, 159], consequently activating cell death via necrosis or apoptosis in the target cells or tissues. AuNP-based hyperthermia in diseased cells has been reported to occur at half the amount of the energy required to kill normal cells, thus perceived to be safer and better PT agents than the conventional dyes [33, 160]. AuNPs can be easily modified to have localized and enhanced PT activity by targeting and accumulating in only diseased cells through either active or passive targeting. And since the tumor environment is already hypoxic, acidic, nutrient starved and have leaky vasculature, the tumors will be most sensitive to the AuNP-based hyperthermia than the surrounding healthy cells and tissues [33, 160].

AuNP-based PTT has been extensively studied [158, 161, 162] and established that AuNPs (e.g., AuNRs, nanocages and nanoshells) that absorb light in the NIR spectrum are best for in vivo and deep tissue PTT [161]. While the ones that absorb and emit light in the visible spectrum (AuNSs and hollow AuNPs) have been demonstrated to treat diseases that affect shallow tissues (up to a depth of 1 mm), which could be of benefit to superficial tumors [158, 161, 162], ocular surgery [164, 165], focal therapy and vocal cord surgery [158, 165]. Although the PTT effects of AuNSs are limited in vivo or for use in deep tissues, combination therapy or active targeting can be incorporated to facilitate target-specific effects [158, 161, 163]. The AuNPs in the combination therapy will serve dual functions as both drug sensitizer and a PT agent, and was shown to enhance anticancer effects of chemotherapeutic drugs [158, 162, 163]. AuNS-Dox combination demonstrated enhanced cancer cell death after laser exposure when compared to the individual effects of the AuNSs and Dox with and without laser treatment [158].

Active targeting on its own can also improve AuNP uptake, localization and target-specific PT effects, which can be viewed in real time by adding fluorophores. AuNSs (25 nm) loaded with transferrin targeting molecules and FITC were shown to accumulate and destroy human breast cancer cells at a higher rate than in non-cancer cells and had better efficacy than the untargeted AuNSs [57]. An independent study also demonstrated that DNA aptamers (As42)-loaded AuNSs (As42-AuNP) induced selective necrosis in Ehrlich carcinoma cells that express HSPA8 protein, a receptor for the aptamers. None of these effects were observed in blood and liver cells mixed with target cells, or cells treated with the AuNSs without laser treatment [163]. The PT effects of the As42-AuNP were replicated in mice transplanted with Ehrlich carcinoma cells in their right leg. As shown in Fig. 9, tail-vein injections of As42-AuNPs followed by laser irradiation resulted in targeted PT destruction of the cancer cells. The As42-AuNPs reduced tumor size in a time-dependent manner; cell death was attributed to increased temperature up to 46 °C at the tumor site. The tumor in mice treated with As42-AuNPs without laser treatment and the AuNPs conjugated with nonspecific DNA oligonucleotide continued to grow but at the lower rate compared to mice injected with PBS. This suggests that the AuNPs were also localized in the tumor [163]. In cases where AuNSs are not efficient for deep tissue PTT, other shapes such as nanocages, nanoshells and AuNRs can be used [158]. Alternately, the visible light absorption of the AuNSs can be shifted to NIR by using processes such as two-photon excitation [57].

In vivo plasmonic PT therapy of cancer cells using targeted AuNSs. As42-AuNPs localized in HSPA8-expressing tumor cells after i.v injection. Exposure to laser treatment resulted in hyperthermia that caused cancer cell death. Reproduced with permission [163]. Copyright 2017, Elsevier

The PT effects of the AuNPs have also been reported for the reversal of obesity [52, 56], using hollow AuNSs (HAuNSs) [52] and AuNRs [56] for the PT lipolysis of the subcutaneous white adipose tissue (sWAT) in obese animals. The HAuNSs were modified with hyaluronate and adipocyte targeting peptide (ATP) to produce HA–HAuNS–ATP conjugate [52]. Hyaluronate was used to ensure topical entry of the HA–HAuNS–ATP through the skin [52, 166], while ATP will recognize and bind to prohibitin once the HAuNSs are internalized. Prohibitin is a receptor that is differentially expressed by the endothelial cells found in the WAT vasculature of obese subjects [5, 52, 55]. The HA–HAuNS–ATP was topically applied in the abdominal region of the obese mice, and through hyaluronate were transdermally shuttled through the epidermis into the dermis where the ATP located the sWATs (Fig. 10) . Illumination of the target site with the NIR laser selectively induced PT lipolysis of the sWAT in the obese mice and reduced their body weight [52]. The AuNRs were used in the photothermolysis-assisted liposuction of the sWATs in Yucatan mini pigs. The untargeted PEG-coated AuNRs (termed NanoLipo) were injected in the sWATs through an incision, followed by laser illumination to heat up the sWATs, which was then aspirated using liposuction. The amount of fat removed from NanoLipo-treated porcine was more than the one removed with conventional suction-assisted lipectomy (SAL). NanoLipo-assisted fat removal had several advantages over the conventional SAL; it took less time (4 min) for liposuction compared to 10 min for SAL, the swelling in the treated site healed faster, and the weight loss effects lasted over 3 months post-liposuction [56].

PT lipolysis of the sWATs using HA-HAuNS-ATP. The ATP was conjugated to the AuNSs for targeted delivery and destruction of the prohibitin-expressing sWATs after NIR laser exposure. Reproduced with permission [52]. Copyright 2017, American Chemical Society

AuNP-based PTT clearly offers a lot of advantages compared to the conventional agents. Their biocompatibility allows for broader applications both in vitro and in vivo. Moreover, they can be customized based on their shapes for shallow (AuNSs) [158, 161, 162] or deep tissue (AuNRs and stars) PTT [158, 161]. At 1–100 nm diameter, AuNPs and its conjugates can circulate long enough to reach and accumulate in the target tissues, with or without targeting moieties [159, 167]. Active targeting can be used to ensure localized PT effects through various routes of administration and might be effective for solid and systemic diseases. AuNP-based PTT can also be used to sensitize cancer cells when administered in combination with chemotherapy, gene therapy and immunotherapy [159]. Therefore, AuNP-based PTT has potential for treatment of chronic diseases [161].

Toxicity of AuNPs

AuNPs can play an important role in medicine, as demonstrated by the preclinical and clinical studies under review. Their full potential in clinical application as both diagnostic and therapeutic agents can only be realized if they do not pose any health and environmental hazards. While their use in vitro appears to be inconsequential, in vivo application can be hampered by their potential toxicity, which could be detrimental to human health. A major concern with their clinical use is that AuNPs are non-biodegradable and their fate in biological systems has not been fully studied [5, 30]. Although AuNPs are considered to be bio-inert and compatible, their properties (size, shape, charge and composition) raise concerns as they can alter their pharmacokinetics when used in biological environment [27, 34, 118]. The toxicity of AuNPs of varying sizes and shapes has been demonstrated in animals [27, 118]. These NPs can accumulate in the RES organs where they induce damage.

AuNPs are 1–100 nm in diameter which makes them smaller than most of the cellular components. At these sizes, AuNPs can passively transverse cellular barriers and blood vessels by taking advantage of the EPR effect in pathological cells. AuNPs with smaller diameters (1–2 nm) can easily penetrate cell membranes and biologically important cellular organelles such as mitochondria and nuclei [7, 168]. Accumulation of AuNPs in these organelles induces irreversible damage that can cause cellular demise. On the contrary, AuNPs larger than 15 nm are restricted to the cytoplasmic spaces and unable to penetrate internal organelles [168]. These features are desirable for targeting pathological cells, however, AuNPs can also be taken up by healthy cells and alter their physiology [118]. Administration of AuNP-based therapeutics can be done via different routes (i.e., intranasal, oral, transdermal, i.p or i.v) and transported through blood vessels into different tissues and organs [34, 118]. They are able to pass through the blood brain barrier and the placental barrier [34]. Toxicity is size dependent, with certain sizes of AuNPs being well tolerated, while others could be lethal to healthy tissues. Unfunctionalized AuNSs at 8, 17, 12, 37 nm caused physical changes (i.e., change the fur color, loss of bodyweight, camel-like back and crooked spine) within 14 days of treatment (2 doses of 8 mg/kg/week) in rats [118]. Most (> 50%) of the rats died within 21 days (i.e., after 3 doses), and abnormalities in the RES organs (liver, lungs and spleen) were observed. On the contrary, mice treated with 3, 5, 50 and 100 nm AuNPs were not affected by the NPs and no adverse effects or death occurred throughout the duration (50 days) of the study [118]. In diet-induced obese rats that received i.v injections of 14 nm cAuNPs, the NPs were detected in various tissues after 24 h and were mostly confined to the RES organs [55].

The shape, charge and surface chemistry of AuNPs can influence their toxicity. These factors can determine how AuNPs will interact with the biological systems, their cellular uptake and effects on the cells. AuNSs are readily taken up by cells and proven to be less toxic than other shapes such as rods and stars. AuNP surfaces are charged and will influence how they interact and behave within a biological environment [169]. Cationic AuNPs are likely to be more toxic compared to neutral and anionic AuNPs, as their charge allows these NPs to easily interact with negatively charged cell membranes and biomolecules such as DNA. Both the positively and negatively charged AuNPs have been associated with mitochondrial stress, which was not observed with the neutrally charged AuNPs [34, 35].

The shell that forms on the surface of the AuNP core can also influence the functioning of the NPs. These are usually reducing and/ or stabilizing agents such as citrate and CTAB, and once subjected to a biological environment, these molecules can cause either the desorption or absorption of biomolecules found in the biological environment. This can result in the formation of a corona or cause the NPs to become unstable. Citrate- and CTAB-capped AuNPs are highly reactive, which can facilitate the attachment of biocompatible polymers such as PEG, polyvinyl-pyrrolidone, poly (acrylic acid), poly(allylamine hydrochloride), and polyvinyl-alcohol) or biomolecules such as albumin and glutathione to prevent the formation of AuNP-corona with serum proteins. These molecules serve as a stabilizing agent and form a protective layer that can mask the AuNPs from attacks by phagocytes [7, 29, 34, 170] and prevent off-target toxicity [7]. As discussed in “AuNP-Based Therapies” section, AuNPs can be functionalized with targeting and therapeutic agents to define their targets and effects [34].

In addition to their physicochemical properties, the dosage, exposure time and environmental settings also influence the activity of AuNPs. Lower doses and short-term exposure times might render AuNP as nontoxic, while increasing these parameters will lead to cytotoxic effects [34]. Moreover, in vitro studies do not always simulate in vivo studies. At times, AuNPs that seem to be nontoxic in cell culture-based experiments end up being toxic in animal experiments. Many factors could be responsible for these discrepancies [118], and some steps have been identified that can guarantee the safety of AuNPs in biomedical applications. The biocompatibility and target specificity of AuNPs can be improved by modifying the surface of the NPs. Attaching targeting moieties on the AuNPs can channel and restrict their effects to specific targets or pathological cells [5, 55, 127]. Modification of AuNP surface with bio-active peptides provides a platform for developing multifunctional AuNPs with enhanced specificity, efficacy and potentially sustainable effects [11, 127]. All of these effects will be instrumental in the design and development of AuNP-based systems for clinical applications.

Clinical Application of AuNPs

Nanotechnology has the potential to shape the future of healthcare systems and their outcomes. Its promise of creating highly sensitive and effective nanosystems for medicine has been realized with the introduction of organic nanoformulations for cancer treatment. These systems have already paved the way for nanomaterials into clinical applications:doxil and abraxane have been in the market for over two decades and demonstrated the potential of nanotechnology in medicine [1, 2]. More recently, this technology has been used for the development of the SARS-CoV-2 lipid NP-based vaccine to fight against the COVID-19 pandemic [171]. Inorganic nanosystems such as AuNPs offer many advantages over their organic counterparts, yet few of these systems are used clinically (Table 2) [19, 32].

While several AuNP-based drugs are some of the inorganic nanomaterial-based drugs that were tested in clinical trials, they are not progressing at the same rate as organic liposome-based nanodrugs. Aurimune (CYT-6091) and aurolase were the first of AuNP-based formulations to undergo human clinical trials for the treatment of solid tumors. CYT-6091 clinical trials started in 2005 for delivery of recombinant TNF-α as an anticancer therapy in late-stage pancreatic, breast, colon, melanoma, sarcoma and lung cancer patients. CYT-6091 consists of 27-nm cAuNPs loaded with TNF-α and thiolated PEG. The CYT-6091 nanodrug has achieved safety and targeted biologic response at the tumor site at a dose lower than that required for TNF-α alone [16, 17]. CYT-6091 is approved and yet to start phase II clinical trials in combination with chemotherapy. Based on phase II clinical trial strategy, several variants of CYT-6091 have been developed and tested in preclinical studies. All the nanosystems contain TNF-α with either chemotherapy (paclitaxel, dox and gemcitabine), immunotherapy (Interferon gamma) or apoptosis inducing agents attached to the 27 nm cAuNPs [14,15,16]. The AuNP conjugates preferentially accumulated in the tumor sites after systemic administration through the EPR effect and vascular targeting effects of the TNF-α. The AuNPs were not detected in the healthy tissues, and the anti-tumor effects of TNF-α were restricted to the tumor environment [14, 16, 19].

The first clinical trial for the PT treatment with AuroLase® for refractory and/or recurrent head and neck cancers was completed. Information on the outcome of this trial is still pending. The second trial is set to evaluate the effects of AuroLase® on primary and/or metastatic lung tumors in patients where the airway is obstructed [19]. The number of human trials based on AuNP-based formulation is increasing, covering the treatment of a wide range of medical conditions including skin, oral, heart and neurological diseases. AuNP-formulation (150 nm silica-gold nanoshells coated with PEG), which is similar to AuroLase®, was approved for PT treatment of moderate-to-severe inflammatory acne vulgaris. The nanoshells were topically applied on the acne area and transdermally delivered into the follicles and sebaceous ducts through low-frequency ultrasound or massage. Nanoshells applied through massage were effective in penetrating the shallow skin infundibulum (90%) and the sebaceous gland (20%), while the low-frequency ultrasound can penetrate both shallow and deep skin tissues. NIR laser treatment resulted in focal thermolysis of the sebaceous glands in the affected area and disappearance of the acne [18, 167]. The gold–silica nanoshells were well-tolerated, showed no systemic toxic effects with minor side effects (reddiness and swelling) at the treatment site [18]. AuNPs offer many health benefits based on their unique properties but at the same time have raised a lot of political and ethical issues, and resulted in termination of some clinical studies (NCT01436123).

Conclusion and Future Perspectives

Applications of AuNPs in biomedicine are endorsed by their unique physicochemical properties and have shown great promise as theranostic agents. The increasing interest in biomedical applications of AuNPs is further encouraged by the biocompatibility and medical history of bulk gold, which suggests that the gold core in AuNPs will essentially display similar or improved properties [3]. But at the same time their small size can infer unique properties that will completely change their pharmacokinetics [144]. The diverse biomedical applications of AuNPs in diagnostics and therapeutics herein discussed demonstrate their potential to serve as adjunct theranostic agents. They can be used as drug delivery, PTT, diagnostic and molecular imaging agents [12, 33, 128]. In time, and with better knowledge of mechanisms of action, more AuNP-based systems will obtain approval for clinical use. However, the excitement of these biomedical applications of AuNPs should unequivocally be balanced with testing and validation of their safety in living systems before any clinical applications.

In conclusion, more work needs to be done to taper the toxicity of AuNPs. This can be achieved by introducing biocompatible molecules on their surface [14, 15, 58, 159], and developing new and better synthesis methods, such as the use of green chemistry to produce biogenic NPs. All these developments may further broaden the applications of AuNPs in nanomedicine. AuNPs are non-biodegradable, and off-target distribution could result in chronic and lethal effects. All these concerns must be addressed before clinical translation; the existing trials will soon provide some clarity on their impact in human health. Should their health benefits outweigh their potential risks as is the case with the existing clinical drugs, it is a matter of time before they are approved for clinical use.

Ketersediaan Data dan Materi

All the information in this paper was obtained from the studies that are already published and referenced accordingly.

Singkatan

5-FU:

5-Fluorouracil

AD:

Alzheimer's disease

ADDLs:

Amyloid-beta-derived diffusible ligands

ASOs:

Antisense oligonucleotides

AuNPs:

Gold nanoparticles

AuNPsQ:

Quantum-sized AuNPs

AuNRs:

Gold nanorods

AuNSs:

Gold nanospheres

BCA:

Bio-barcoding assay

cAuNPs:

Citrate-capped AuNPs

COVID-19:

Corona virus disease 2019

CSF:

Cerebrospinal fluid

CT:

Computed tomography

CTAB:

Cetyltrimethylammonium bromide

DABCYL:

4-((4′-(Dimethyl-amino)-phenyl)-azo)benzoic acid

DAPT:

4,6-Diamino-2-pyrimidinethiol

Dox:

Doxorubicin

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

EPR:

Enhanced permeability and retention

FA:

Folate

FDA:

Administrasi Makanan dan Obat

FITC:

Fluorescein isothiocyanate

FRET:

Fluorescence resonance energy transfer

HAuNSs:

Hollow AuNSs

HF:

High-fat

HU −1 :

Hounsfield unit

LFAs:

Lateral flow assays

LSPR:

Localized surface plasmon resonance

MDR:

Multidrug resistant

MGF:

Mangiferin

MPA:

Mercaptopropionic acid

MWPLP:

Microwave-induced plasma-in-liquid process

NCL:

Nucleolin

NIR:

Near-infrared

NSMs:

Nanostructured materials

P. jirovecii :

Pneumocystis jirovecii

PEG:

Polyethylene glycol

PSA:

Prostate-specific antigen

PSMA:

Prostate-specific membrane antigen

PT:

Photothermal

PTT:

Photothermal therapy

QDs:

Quantum dots

RES:

Reticuloendothelial system

ROS:

Reactive oxygen species

SARS-CoV-2:

Severe acute respiratory syndrome-coronavirus-2

SCID:

Severe combined immunodeficiency

SPR:

Surface plasmon resonance

sWAT:

Subcutaneous white adipose tissue

TOAB:

Tetrabutylammonium bromide

TRMs:

Tissue-resident macrophages

VEGF:

Vascular endothelial growth factor

WAT:

White adipose tissue


bahan nano

  1. Nanopartikel emas untuk sensor kemo
  2. Nanopartikel untuk Terapi Kanker:Kemajuan dan Tantangan Saat Ini
  3. Kemajuan dan Tantangan Nanomaterial Fluorescent untuk Sintesis dan Aplikasi Biomedis
  4. Komposit Grafena dan Polimer untuk Aplikasi Superkapasitor:Tinjauan
  5. Persiapan Struktur Nano Kuning–Kuning Au@TiO2 dan Aplikasinya untuk Degradasi dan Deteksi Metilen Biru
  6. Modified Hyperbranched Polyglycerol sebagai Dispersant untuk Kontrol Ukuran dan Stabilisasi Nanopartikel Emas dalam Hidrokarbon
  7. Persiapan Mikromaterial Hibrida MnO2 Berlapis PPy dan Peningkatan Performa Sikliknya sebagai Anoda untuk Baterai Lithium-Ion
  8. Fabrikasi, Karakterisasi, dan Sitotoksisitas dari Cangkang Kerang Emas Terkonjugasi Berbentuk Bulat Berasal Kalsium Karbonat Nanopartikel untuk Aplikasi Biomedis
  9. Kemajuan terbaru dalam metode sintetis dan aplikasi struktur nano perak
  10. Saponin platycodon dari Platycodi Radix (Platycodon grandiflorum) untuk Sintesis Hijau Nanopartikel Emas dan Perak