Manufaktur industri
Industri Internet of Things | bahan industri | Pemeliharaan dan Perbaikan Peralatan | Pemrograman industri |
home  MfgRobots >> Manufaktur industri >  >> Industrial materials >> bahan nano

Nanopartikel Fluorida Bumi Langka Kecil Mengaktifkan Pertumbuhan Sel Tumor melalui Interaksi Kutub Listrik

Abstrak

Interaksi ekstraseluler lokal antara nanopartikel dan reseptor sinyal transmembran mungkin mengaktifkan pertumbuhan sel kanker. Di sini, LaF kecil3 dan PrF3 nanopartikel dalam suspensi DMEM+FBS merangsang pertumbuhan sel tumor di tiga garis sel manusia yang berbeda (A549, SW837 dan MCF7). Distribusi ukuran nanopartikel, aktivasi jalur pensinyalan AKT dan ERK, dan uji viabilitas menunjukkan stimulasi mekanis situs pengikatan adhesi ligan integrin dan EGFR melalui aksi sinergis ansambel nanopartikel ukuran kecil (< 10 nm). Sementara nanopartikel ukuran kecil mungkin terkait dengan aktivasi EGFR, interaksi integrin dengan nanopartikel tetap menjadi masalah multifaset. Motif teoretis menunjukkan bahwa, dalam skala gaya pN yang diperlukan, setiap situs pengikatan adhesi ligan dapat diaktifkan oleh nanopartikel dielektrik ukuran kecil melalui interaksi dipol listrik. Ukuran nanopartikel aktif tetap ditentukan oleh jumlah muatan permukaan pada situs pengikatan adhesi ligan dan nanopartikel, dan juga oleh jarak pemisah antara mereka. Komponen kutub dari gaya dipol listrik tetap berbanding terbalik dengan pangkat dua ukuran nanopartikel, menunjukkan bahwa hanya nanopartikel dielektrik ukuran kecil yang dapat merangsang pertumbuhan sel kanker melalui interaksi dipol listrik. Pekerjaan ini berkontribusi untuk mengenali mode stres sitoskeletal yang berbeda dari sel kanker.

Latar Belakang

Tumorigenesis adalah masalah multidimensi yang melibatkan perubahan genom. Ini juga diaktifkan oleh interaksi sel-matriks ekstraseluler (ECM) antara perancah dan struktur sitoskeletal [1,2,3,4] yang diekspresikan melalui penekanan mekanosensor, mirip dengan integrin, dari kekuatan seluler multi-bagian yang mampu mengubah pemrograman genomik [5]. Interaksi lingkungan mikro tumor dengan perancah ECM biasanya mengaktifkan protein adhesi fokal membran sel dan reseptor sinyal transmembran (TSR), reseptor faktor pertumbuhan epidermal (EGFR), faktor pertumbuhan endotel vaskular (VEGFR) atau reseptor faktor pertumbuhan saraf (NGFR). Mekanosensor mengatur pertumbuhan sel tumor melalui transaksi sinyal antara domain aktif ekstraseluler sel [6,7,8,9] dan filamen F-aktin intraseluler, dengan memicu longsoran reaksi fosforilasi.

Perubahan konformasi protein dan eksitasi jalur TSR membutuhkan gaya pengaktif untuk berada pada kisaran gaya pN, dan tentunya di bawah pengukur nN [10]. Selain tekanan mekanis acak dan kekuatan afinitas kimia aktif, efisiensi pengikatan (kekuatan ikatan) antara nanopartikel (NP) dan protein membran sel dapat dimodulasi baik melalui kutub listrik jarak pendek atau jarak jauh atau jenis interaksi dispersif lainnya. Pada area permukaan NP yang terbatas, hanya sejumlah protein tertentu yang dapat dilekatkan cukup lama untuk menjadi aktif secara biologis [11], dan interaksi lokal yang dibatasi ruang dengan lingkungan biologis diketahui bertanggung jawab atas serangkaian fungsi sel yang berbeda. rute [12]. Akibatnya, jalur transaksi sinyal dari interaksi protein-NP menandakan masalah keamanan untuk NP [11, 13].

Karena respons yang menguntungkan atau merugikan dalam sel dari NP adalah tipe spesifik [11], hubungan antara NP dan tanda biologis harus ditetapkan berdasarkan kasus per kasus [14, 15].

Hasil yang bertentangan dari sel tumor yang terpapar NP, baik untuk efisiensi pertumbuhan ablatif atau tumor atau tingkat toksisitas variabel NP [16, 17], juga memunculkan masalah keamanan. Namun demikian, terlepas dari kemajuan, saat ini ada kekurangan pengetahuan tentang jalur spesifik di mana NP berinteraksi dengan sel eukariotik, menghalangi identifikasi pendekatan terapeutik NP universal. Karena NP ukuran yang berbeda dan kimia permukaan yang beragam biasanya mengalihkan respons seluler, termasuk pengikatan reseptor membran NP dan aktivitas TSR, toksisitas NP terkait dengan morfologi surfaktan, status pengisian listrik, konsentrasi dan komposisi protein dan bahan nano di ECM [18,19,20,21] dan terakhir kekuatan ikatan molekuler antara NP dan fenotipe sel [22].

Studi sebelumnya tentang melanoma dan karsinoma serviks yang terpapar silika, NP emas, dan nanotube karbon mengakui bahwa ukuran NP mengaktifkan pertumbuhan sel tumor secara selektif [23,24,25,26,27]. Korelasi antara sinyal TSR dalam garis sel kanker SK-BR-3 manusia dan ukuran NP emas dan perak yang dimodifikasi menunjukkan bahwa meskipun NP ukuran 2-100 nm mereformasi transduksi sinyal, perbedaan besar dalam aktivitas apoptosis dicapai ketika sel berinteraksi dengan 40 – NP berukuran 50 nm [26]. Baru-baru ini, juga disarankan bahwa mengubah ukuran NP emas dari 5 menjadi 40 nm, tingkat pertumbuhan garis sel kanker A549 dan 95D mungkin disetel. Secara khusus, NP berukuran 5 nm menghambat proliferasi kedua jenis sel, sedangkan NP berukuran ~ 10 nm tidak memiliki efek apa pun pada pertumbuhan sel [27]. Demikian juga, sel A549 dan THP-1 yang terpapar SiO2 NP menunjukkan sitotoksisitas yang bergantung pada ukuran serta NP berukuran 15 nm juga berkorelasi dengan tingkat sitotoksisitas yang tinggi. Sebaliknya, NP berukuran 60 nm menunjukkan toksisitas yang lebih rendah. Akhirnya, NP berukuran 200 nm meningkatkan pertumbuhan sel induk melalui aktivasi ERK1/2, sedangkan NP berukuran 2-4 m mampu mengaktifkan jalur transduksi sinyal yang berbeda [28]. NP berukuran kecil mengkonjugasikan EGFR dan mengaktifkan jalur transaksi sinyal protein kinase B (AKT) dan ekstraseluler yang diatur sinyal kinase (ERK) yang mengobarkan pertumbuhan sel.

Nanopartikel tanah jarang (RE-NPs) juga dapat berinteraksi dengan domain tertentu seperti situs adhesi bergantung ion logam (MIDAS), penyesuaian ke MIDAS (ADMIDAS), situs pengikatan ion logam sinergis (SyMBS) dan situs pengikatan ligan (LABS) , terletak di ν 3 subunit atau subunit integrin lainnya [29, 30].

Demikian juga, RE-NP memerlukan tingkat tambahan kelenturan dalam interaksi tumor NP [31,32,33,34]. Sementara NP ceria (nanoceria) menunjukkan tindakan protektif terhadap kerusakan seluler oleh radikal yang berbeda [35], tingkat konsentrasi rendah dari NP ceria yang dimodifikasi sangat meningkatkan proliferasi sel hepatoma dengan mengurangi apoptosis melalui aktivasi jalur pensinyalan AKT/ERK [36]. Biasanya, ansambel NP yang mengelilingi sel bertanggung jawab untuk tekanan sitoskeletal dan sama-sama berdiri untuk kimia, termodinamika nano (Hill) [37], entropis atau interaksi dipol listrik antara NP dan mekanosensor. Namun, sampai saat ini pemahaman tentang interaksi antara NP, TSR, dan sel masih kabur dan tidak tersedia.

Pada prinsipnya, karakter ionik yang kuat dari senyawa RE harus merangsang mekanosensor sel melalui interaksi listrik. Juga, karena ion RE banyak digunakan dalam aplikasi yang berbeda, sangat penting untuk melihat kontribusi potensial mereka terhadap pertumbuhan sel tumor untuk menyiratkan protokol perlindungan kesehatan masyarakat yang tepat. Lantanum fluorida (LaF3 ) dan praseodymium fluoride (PrF3 ) digunakan dalam lampu neon, kacamata warna radiasi, serat optik, aplikasi email dan elektroda. LaF3 diuraikan dalam jenis gelas tertentu, pelapis lampu fosfor, pengolahan air dan katalis. Ini juga merupakan komponen penting dari kaca fluorida komersial (ZBLAN), yang dicampur dengan europium fluorida digunakan untuk komunikasi optik dan sebagai membran kristal dalam elektroda fluorida selektif ion dengan transmisi yang baik dalam inframerah. Sama, PrF3 juga digunakan dalam lampu busur karbon untuk industri film, pencahayaan studio dan lampu proyektor. Kacamata fluoride yang didoping dengan praseodymium juga digunakan dalam amplifier serat optik mode tunggal.

Dengan demikian, penelitian ini menunjukkan bahwa RE-NP berukuran kecil memiliki potensi untuk merangsang pertumbuhan sel tumor melalui interaksi dipol listrik.

Artikel ini disusun menjadi tiga bagian. Pertama, distribusi ukuran, interaksi dan geometri NP dianalisis dengan menerapkan hamburan cahaya dinamis (DLS), mikroskop gaya atom (AFM), mikroskop elektron transmisi (TEM), difraksi sinar-X (XRD), cepat dua dimensi. Analisis transformasi Fourier (2D-FFT) dan spektroskopi ultraviolet vakum (VUV 110–180 nm). Selanjutnya, korelasi antara tingkat pertumbuhan tiga garis sel kanker manusia yang berbeda (A549, SW837 dan MCF7) dengan distribusi ukuran dan konsentrasi LaF3 dan PrF3 NP didirikan. Akhirnya, dalam batas kekuatan yang diperlukan 1 pN untuk mengaktifkan mekanosensor dan selanjutnya pertumbuhan sel tumor, kelangsungan hidup sel tumor dipasang dalam motif teoritis interaksi dipol listrik antara satu RE-NP dan satu LABS. Pekerjaan ini berkontribusi terhadap identifikasi dan klasifikasi berbagai jenis tekanan sitoskeletal dan interaksi antara NP dan mekanosensori sel kanker.

Hasil

Ukuran dan Struktur NP

Pertama, DLS, AFM, TEM, XRD, FFT, spektroskopi VUV dan t statistik uji diterapkan untuk mengekstrak distribusi ukuran RE-NP dalam suspensi cair (Gbr. 1, 2, 3, 4, 5, 6 dan 7). Selanjutnya, uji viabilitas sel dan uji Western blotting (Wb) digunakan untuk mengidentifikasi aktivasi mekanosensor spesifik oleh RE-NP.

Spektrum distribusi ukuran DLS dari suspensi RE. a, b PrF3 dan LaF3 NP (5 g/L) dalam air. c, d PrF3 dan LaF3 NP (5 g/L) dalam DMEM+FBS. e, f PrF3 dan LaF3 NP (0,1 g/L) dalam DMEM+FBS. g, j Jari-jari hidrodinamik rata-rata (MHR) dengan standar deviasi PrF3 dan LaF3 NP di DMEM+FBS pada tingkat konsentrasi yang berbeda

AFM digital (x , y ) ukuran histogram RE-NP. (a1–d1 ) PrF3 (2 × 2 m 2 ) dan LaF3 (1 × 1 m 2 ) NP dalam suspensi DMEM+FBS. (a2–d2 ) (x , y ) histogram ukuran rata-rata diameter area lingkaran yang sama \( \left(\overline{d}\kanan) \) dari RE-NPs. (a3–d3) (x , y ) histogram ukuran diameter area Feret \( \left(\overline{\ F.D.}\right) \) RE-NP. (a4–d4 ) Histogram sudut Feret (F.A.) relatif terhadap x -sumbu. RE-NP diorientasikan sepanjang dua arah utama antara ±(44–60 °)

TEM digital (x , y ) histogram ukuran RE-NP. (a1, b1 ) Gambar TEM dari RE-NP. Garis kuning menunjukkan batas 2D antara RE-NP. (a2, b2 ) (x , y ) histogram ukuran rata-rata diameter area lingkaran yang sama \( \left(\overline{d}\kanan) \) dari RE-NPs. (a3, b3 ) (x , y ) histogram ukuran diameter area Feret \( \left(\overline{\ F.D.}\right) \) RE-NP. (a4, b4 ) Histogram sudut Feret (F.A.) relatif terhadap x -sumbu dengan arah preferensial pada ± (44–60 °). (c ) Histogram ukuran diameter Feret dari RE-NP ukuran kecil dan kecil yang diekstraksi dari gambar AFM dan TEM untuk 4 m 2 daerah

Histogram parameter permukaan (z-height) dari PrF3 dan LaF3 RE-NP pada substrat kaca di DMEM+FBS dan etanol untuk area pemindaian yang berbeda. a , e Kekasaran daerah. b , f RMS daerah. c , g Tinggi rata-rata. d , h Z maksimum -rentang

AFM dan gambar optik RE-NP kering di DMEM+FBS. ad Optik (a ) dan gambar AFM (bd ) dari DMEM+FBS menunjukkan 5 m struktur rakitan sendiri. eh CCD (e ) dan gambar AFM (fh ) dari PrF3 NP dalam media DMEM + FBS menunjukkan struktur rakitan dendrit 500 nm. sayal CCD (i ) dan gambar AFM pada perbesaran yang berbeda (jl ) dari LaF3 NP dalam DMEM+FBS menunjukkan struktur rakitan sendiri dendrit 100 nm

Spektrum 2D-FFT dari z -distribusi tinggi RE-NP kering dalam media DMEM + FBS menunjukkan adanya NP berukuran kecil dalam suspensi cair. a , b distribusi tinggi-z PrF3 NP dari gambar AFM, Gambar 2(a1, b1). Kecil z -fitur ketinggian (~ 5 nm) diidentifikasi di (b ). c , d distribusi ketinggian z dari LaF3 NP dari gambar AFM, Gambar 2(c1, d1). e , f Spektrum kekuatan z -vektor gelombang tinggi PrF3 NP di sepanjang x -sumbu. g , h Spektrum kekuatan z -vektor gelombang tinggi dari LaF3 NP di sepanjang x -sumbu

Spektrum XRD dari a PrF3 dan b LaF3 NP. Diameter rata-rata luas permukaan PrF3 dan LaF3 NP masing-masing adalah ~ 23 ± 4 dan ~ 15 ± 4 nm

DLS

Campuran heterogen berawan awalnya dibentuk dengan menambahkan RE-NP dalam media kultur sel, menunjukkan kompleksitas interaksi antara RE-NP dalam suspensi cair. Struktur NP-RE yang kecil (< 10 nm), kecil (> 10 dan < 20 nm) dan berukuran besar (> 20 nm) diidentifikasi untuk kedua PrF3 dan LaF3 larut (Gbr. 1a–d).

Nilai radius hidrodinamik rata-rata (MHR) dari RE-NP ukuran besar (55–83 nm untuk PrF3 dan 99–296 nm untuk LaF3 ) diikuti secara langsung dan berbanding terbalik dengan tingkat konsentrasi NP (0,1–10 kg m −3 ) dalam cairan Dulbecco's modified Eagle's with fetal bovine serum (DMEM+FBS), Gbr. 1g, h. Juga, MHR LaF ukuran kecil3 dan PrF3 NP tetap konstan, masing-masing 10,66 ± 0,74 nm dan 10,64 ± 0,40 nm, pada tingkat konsentrasi RE-NP yang berbeda. MHR RE-NP tetap tidak berubah selama setidaknya 6 hari. Setelah mengeringkan suspensi RE-NP, tidak mungkin untuk melarutkan kembali bubuk RE lagi, karena aglomerasi ukuran besar distabilkan oleh interaksi kuat yang memaksa pengendapan.

Pencitraan AFM dan TEM dari RE-NP dan Analisis Permukaan

Untuk distribusi ukuran dan statistik yang andal dari RE-NP berukuran kecil di DMEM+FBS pada 0,1 kg m −3 AFM (pindai area 1 × 1 dan 2 × 2 m 2 ) dan pencitraan TEM juga diterapkan (Gbr. 2(a1-d1) dan Gbr. 3(a1, b1)). Setelah mentransfer tetesan cairan RE-NP dalam DMEM+FBS ke substrat kaca, sejumlah besar RE-NP kecil yang tidak teragregasi diidentifikasi [38] dari ukuran rata-rata dan diameter Feret rata-rata NP ( Gambar 2(a2–d2, a3–d3) dan Gambar 3(a2, b2, a3, b3)). Juga, histogram dari distribusi sudut diameter AFM dan TEM Feret (untuk dimensi NP yang lebih besar) menunjukkan bahwa kedua RE-NP diorientasikan secara istimewa sepanjang dua arah antara ± (44–62 o ), relatif terhadap x -sumbu (Gbr. 2(a4–d4) dan Gbr. 3(a4, b4)).

Meskipun begitu z -distribusi tinggi NP tidak memberikan informasi langsung tentang distribusi ukuran NP secara keseluruhan, ini adalah alat perbandingan yang berguna untuk estimasi pertama (x , y ) distribusi ukuran karena tinggi-z dan (x , y ) distribusi tetap saling terkait [38].

Parameter permukaan rata-rata dari kedua PrF3 dan LaF3 dalam suspensi kering untuk area pemindaian AFM yang berbeda juga ditunjukkan pada Gambar. 4. z . kecil -nilai ketinggian menunjukkan z . yang sangat seragam -distribusi tinggi kedua RE-NP untuk 1 × 1 m kecil 2 memindai area. Sebaliknya untuk RE-NP dan area pemindaian yang lebih besar, z -distribusi tinggi secara signifikan lebih luas. z . yang rendah -Nilai distribusi ketinggian di area pemindaian kecil mencerminkan keberadaan RE-NP berukuran kecil dalam suspensi cair. Nilai parameter permukaan dalam media DMEM+FBS rata-rata lebih besar daripada dalam etanol, menunjukkan keadaan reaktif kompleks antara protein dan RE-NP, sesuai dengan penataan multifaset dari Gambar 5 dan data 2D-FFT (Gbr. 6 ). Secara keseluruhan, LaF3 NP menunjukkan respons yang menarik dalam suspensi kering dan parameter kekasaran permukaan yang lebih luas daripada PrF3 NP.

FFT

Cincin berwarna ditambahkan dalam jari-jari yang dipilih dalam spektrum 2D-FFT (Gbr. 6a-d). Siklus mewakili distribusi ukuran NP yang berbeda di ruang Euclidean, dari ukuran kecil yang sama dengan ukuran piksel (1,9–3,9 nm) hingga ukuran yang cukup besar ~ 2 m, yang merupakan batas pemindaian atas ujung AFM di z -sumbu (Gbr. 6e-h). Sebuah dekonvolusi dari z -nilai ketinggian dengan radius ujung AFM memberikan resolusi aktual di z -distribusi tinggi ~ 5 nm. Spektrum 2D-FFT menunjukkan distribusi vektor gelombang yang intens di dekat pusat, karena rata-rata z -tinggi RE-NP dari ~ 44 nm. Pola FFT menunjukkan struktur halo, yang dioleskan secara bertahap, karena struktur ukuran kecil yang luas dan terpolidispersi yang diidentifikasi dalam spektrum 2D-FFT. Karena hanya halo yang muncul dalam spektrum tanpa pola difraksi apa pun untuk kedua spektrum 2D-FFT, struktur rakitan sendiri yang teratur tidak ada. Panjang korelasi karakteristik yang diperoleh dari pola 2D-FFT seperti cincin dari PrF3 dan LaF3 masing-masing adalah ~ 51, 70 nm dan 28, 49 nm, sesuai dengan nilai MHR yang diekstraksi dari spektrum DLS.

XRD

Spektroskopi XRD mengkarakterisasi struktur kristal dan memberikan informasi pelengkap tentang ukuran PrF3 dan LaF3 NP (Gbr. 7). Puncak difraksi yang tajam, sesuai dengan struktur fase heksagonal standar untuk kedua RE-NP, mengungkapkan keadaan kristal fase aglomerasi yang tinggi. Dengan menggunakan rumus Scherrer (\( \tau =\frac{0.9\lambda }{\beta \cos \left(\theta \right)}\Big) \), rata-rata mean diameter lingkaran luas yang sama (MEAC) τ dari PrF3 dan LaF3 NP diperkirakan masing-masing ~ 23 ± 4 dan ~ 15 ± 4 nm.

Spektroskopi VUV

Spektrum transmisi VUV dari PrF hidroskopik3 Lapisan NP disimpan di CaF2 substrat, dari 125 nm (~ 10 eV) hingga 190 nm (~ 6,5 eV) ditunjukkan pada Gambar. 8. Puncak VUV pada 140-170 nm yang sebelumnya dikaitkan dengan transisi Pr 3+ ion trivalen dari tanah 4f konfigurasi status elektronik ke komponen Stark dari 4f5d konfigurasi elektronik di dalam YF3 , LaF3 , KY3 F10 dan LiLuF4 matriks kristal tunggal dan mereka tumpang tindih dengan pita penyerapan VUV air, mengungkapkan keberadaan molekul air terikat di PrF3 dan LaF3 kristal.

Spektrum transmisi VUV PrF3 NP dalam suspensi air yang diendapkan pada CaF kering2 substrat. Spektrum menunjukkan perlekatan dan perangkap air di dalam PrF3 NP

Uji Viabilitas

Setelah analisis distribusi ukuran dan statistik RE-NP, uji viabilitas garam tetrazolium (WST) yang larut dalam air digunakan untuk memantau toksisitas PrF3 dan LaF3 NP untuk tiga garis sel kanker manusia, A549 berasal dari kanker paru-paru, SW837 berasal dari kanker usus besar dan MCF7 berasal dari kanker payudara. Tiga konsentrasi berbeda dari suspensi RE-NPs (0,5, 1 dan 5 mM) dalam DMEM+FBS (A549, SW837) dan media Roswell Park Memorial Institute dengan Fetal Bovin Serum (RPMI+FBS) (MCF7) digunakan. Garis sel awalnya ditempatkan pada pelat 96-sumur, dibiarkan menempel semalaman. Agar berada dalam wilayah linier pertumbuhan sel dan untuk menghindari kejenuhan (Gbr. 9a) sehari setelahnya, media segar yang mengandung PrF3 dan LaF3 suspensi ditambahkan, dan uji viabilitas dilakukan 24 dan 48 jam kemudian setelah penambahan RE-NP, atau 48 dan 72 jam setelah momen awal pelapisan sel. Namun, untuk tiga konsentrasi dan tiga garis sel kultur, perbedaan pertumbuhan berlebih terdeteksi, asalkan media tidak diganti dan RE-NP tambahan tidak ditambahkan dalam kultur, praktik yang mengubah kondisi awal percobaan. Juga, tidak mungkin untuk menempatkan konsentrasi sel kurang dari ~ 5 × 10 4 sel per sumur karena pertemuan untuk tiga garis sel terlalu kecil untuk menjamin pertumbuhan sel yang terukur. Pengaturan eksperimental yang optimal telah disiapkan untuk ~ 5 × 10 4 sel per sumur.

a Histogram uji viabilitas WST dari tiga garis sel kanker yang berbeda (A549, SW837, MCF7) diobati dengan konsentrasi PrF3 yang berbeda dan LaF3 NP di media biologis. b Gambar AFM dari sel kanker A549 tunggal. c Gambar AFM dari sel kanker A549 yang terbagi dalam RE-NPs di DMEM + FMS. d Analisis fosforilasi Wb sel A549, SW837 dengan jalur AKT dan ERK

Pada konsentrasi yang lebih tinggi (5 mM), untuk kedua suspensi RE, pertumbuhan menaik untuk semua garis sel diperoleh (Gbr. 9b, c). Diantaranya, nilai pertumbuhan tertinggi adalah untuk jalur SW837 (86%, LaF3 ). Kurang jelas, tetapi masih relevan, pertumbuhan berlebih sel (15%) terlihat untuk garis sel MCF7 pada 5 mM. t uji analisis statistik (p dan Fisher F nilai) viabilitas sel tumor menunjukkan bahwa pertumbuhan sel tumor tidak jenuh pada 24 jam; itu mengikuti hukum fisik yang tidak diketahui yang menghubungkan viabilitas dan konsentrasi RE-NP (File tambahan 1).

Uji Fosforilasi

Status fosforilasi dua protein juga diuji (Gbr. 9d). Menggunakan antibodi spesifik dan uji Wb dalam garis sel A549 dan SW837 tumbuh di DMEM+FBS dengan 5 mM LaF3 dan PrF3 NP selama 24 jam, diperoleh aktivitas fosforilasi ERK1/2 dan AKT yang tinggi dalam sel yang diobati, dibandingkan dengan sel kontrol (CTRL).

Diskusi

Tingkat pertumbuhan relatif sel kanker meningkat pada tingkat konsentrasi yang lebih tinggi dari kedua RE-NP (Gbr. 9a). Namun, nilai MHR RE-NP di DMEM+FBS dilacak secara langsung (PrF3 ) dan berbanding terbalik (LaF3 ) dengan konsentrasi RE-NP sebesar 0,1–10 kg m −3 (Gbr. 1g, h). Oleh karena itu, RE-NP dengan ukuran rata-rata di atas ~ 55 nm seharusnya tidak berpengaruh pada pertumbuhan sel dan hanya NP ukuran kecil yang dapat berperan nyata dalam pertumbuhan tumor.

Ukuran dan Struktur RE-NP

Identifikasi RE-NP Kecil

Dari data eksperimen, ukuran rata-rata, distribusi dan parameter statistik RE-NP diekstraksi. Dengan menerapkan t uji statistik untuk “hipotesis nol” dari “rata-rata luas lingkaran yang sama” dari NP dalam PrF kering3 dan penangguhan DMEM+FBS, p nilai diameter NP antara dua gambar AFM yang dipilih secara acak adalah ~ 0,001 (File tambahan 2). Nilai diameter MEAC (63 nm) diekstraksi dengan percaya diri dari data AFM, dan ini sebanding dengan nilai MHR dari data DLS (Gbr. 1g).

Sebaliknya, nilai diameter MEAC dari LaF yang dipilih secara acak3 sampel menunjukkan diameter MEAC rata-rata 26 nm dengan nilai probabilitas penolakan yang lebih tinggi (p = 0.07), menunjuk ke perilaku yang berbeda dari LaF3 dalam suspensi cair. Perbedaan antara diameter MEAC dan MHR dari DLS (296 nm) (Gbr. 1) adalah karena kompleksitas interaksi di LaF3 suspensi lagi. Memang, untuk 2 × 2 m 2 Area pemindaian tip AFM, rata-rata z -tingginya ~ 140 nm, menampilkan keberadaan LaF ukuran besar3 NP, ditransfer dari suspensi cair pada substrat (Gbr. 4). Untuk "hipotesis nol" dari "nilai diameter MEAC yang sama dari sampel TEM yang dipilih secara acak", p nilainya juga kecil (p = 0,001). Untuk kedua RE-NP, nilai diameter MEAC rata-rata yang diekstraksi dari data gabungan TEM dan XRD untuk kedua PrF3 dan LaF3 menunjukkan p high tinggi nilai, p = 0,29 dan 0,06, masing-masing, tidak memungkinkan adanya korelasi antara data TEM dan XRD. Hanya TEM, AFM (PrF3 ) dan data DLS cukup andal untuk mengekstrak diameter MEAC dan nilai cangkang inti (File tambahan 2).

Juga, distribusi sudut non-isotropik dari diameter Feret menunjukkan bahwa kedua PrF3 dan LaF3 struktur adalah dielektrik yang sangat terpolarisasi, karena distribusi sudut anisotropik merupakan indikasi interaksi kutub listrik yang kuat antara nanocrystals. Keadaan terpolarisasi yang beragam dari LaF3 bertanggung jawab untuk menurunkan efisiensi relatif dari keadaan aglomerasi dalam suspensi dan meningkatkan parameter kekasaran permukaan dalam sampel kering.

Analisis partikel perangkat lunak dari gambar AFM acak untuk 5 L dan konsentrasi 0,1 kg m −3 mengidentifikasi sejumlah ~ 22 dan ~ 11 RE-NP dengan ukuran lebih kecil dari 15 nm dan 10 nm (p = 0,001), masing-masing, dan sejumlah ~ 60 RE-NP dari gambar TEM (p = 0.001) di area ~ 4 m 2 , mengkonfirmasikan adanya RE-NP ukuran kecil dalam suspensi (Gbr. 3(c), File tambahan 2) tidak terdeteksi dengan DLS.

Struktur dan Geometri RE-NP

Distribusi ukuran RE-NPs berbeda dalam etanol dan suspensi DMEM+FBS (Gbr. 4). Keragaman ini memiliki interaksi molekuler yang berbeda antara protein yang teradsorpsi, karbohidrat, elektrolit dan permukaan RE-NP, yang mengarah pada pembentukan jubah organik yang sangat kompleks (corona), yang memodulasi interaksi spesifik RE-NP' dengan sel-sel di Media DMEM+FBS.

Interaksi antara molekul air yang terperangkap dalam RE-NP higroskopis dan DMEM + FBS juga penting untuk pembentukan cangkang inti. Ini juga memiliki efek mendalam pada protein dan perubahan konformasi dalam interaksi di antara selama fase awal persiapan. Karena rasio permukaan-ke-massal dari NP mengembangkan nilai tinggi dalam suspensi, stabilitas efektif dan sifat fisikokimia, mekanik dan aliran RE-NP, termasuk kemampuan untuk menyerap protein, sangat bervariasi [39,40,41] .

Distribusi ukuran komparatif RE-NP dalam cairan (DLS) dan suspensi yang dipadatkan melalui AFM dan TEM menunjukkan bahwa RE-NP dienkapsulasi di dalam bentuk organik yang membentuk struktur dielektrik cangkang inti, di mana cangkang berprotein mengelilingi inti RE. AFM yang dicitrakan dari RE-NP yang dipadatkan dalam suspensi DMEM+FBS yang diendapkan pada substrat kaca juga menunjukkan pembentukan RE-NP multifaset dan kompleks korona protein (Gbr. 5). Sementara media kering membentuk pola rakitan struktur kristal yang teratur (Gbr. 5a-d), suspensi RE-NPs kering menunjukkan struktur berlapis amorf yang memiliki beberapa bintik hitam, terlihat bahkan dengan kamera digital AFM (Gbr. 5e-l) . Pada perbesaran optik yang lebih tinggi, aglomerasi diskrit dari bentuk globular, lebih kecil daripada yang ada di medium saja, juga terdeteksi untuk kedua RE-NP di DMEM + FBS, bersama dengan struktur tipe dendrit, keduanya menunjukkan kompleksitas interaksi, sesuai dengan hasil parameter permukaan (Gbr. 4). Bahkan dengan resolusi AFM tertinggi (1 × 1 m 2 area), jalur terakhir dari Gambar 5, tidak ada agregasi RE-NP yang terisolasi, dalam batas resolusi ~ 5 nm, diidentifikasi dalam struktur kering untuk kedua RE-NP. Miselia bola warna hitam, panjang 1-2 m, ditunjukkan pada gambar optik, adalah formasi aglomerasi besar dari RE-NP cangkang inti. Kompleksitas reaksi antara RE-NP dan DMEM+FBS divisualisasikan melalui transformasi struktur memanjang rakitan jangka panjang dalam DMEM+FBS murni menjadi struktur dendrit.

Hasilnya menunjukkan gambar struktur inti RE-NP tunggal yang dienkapsulasi di dalam cangkang protein. Struktur ini tidak terdeteksi karena dikelilingi oleh bahan organik dan elektrolit, keduanya bereaksi silang dengan RE-NP. Spektrum VUV dari PrF3 menunjukkan beberapa puncak spektral antara 140 dan 170 nm (Gbr. 8). Transisi ionik tumpang tindih oleh pita penyerapan air VUV yang diperpanjang dari 145 hingga 180 nm dengan maksimum pada 168nm. Hanya tanda spektral dari 4f6s konfigurasi elektronik dengan maxima pada 132 dan 127 nm hadir dalam spektrum. However, these bands could evince the presence of water in the high hygroscopic PrF3 suspensi. Water has a rich, structured absorption band in the VUV spectral range centred at 122 nm, revealing the presence of water molecules in the core-shell NPs.

Activation of Mechanosensors

Activation of Integrins by External Forces

The activation of oncogenic pathways by RE-NPs [24], besides the 3D structural nature of TSRs, is based on some Natural Evolution principles for sustaining the viability of cells. First, upon binding a specific external ligand in a LABS, conformational changes along the entire TSR spectrum underline a series of cascading pathways, triggering tumour cell growth (Fig. 9c, d). The transmission of signals advances through the plasma membrane via various protein chains. Signal transduction was via conformational transformations of integrins responding to a high affinity external force (Fig. 10a, b).

Simplified layout of integrin activation by NPs and signal transaction pathways. a Structure and conformational geometries of integrins at a low (A), medium (B) and high-affinity strengths (C). b AKT and ERK1/2 signal transaction pathways activated by RE-NPs via external integrin stimulation

Because of “life sustainability” and “survival laws” that prevents cancer cell growth by random “noise”, it is required that the strength of the external force should be within a bounded range of values and also the external strength stimulus should apply for a long period on a large number of mechanosensors in a cancer cell. The external strength that stimulates cancer must be slightly larger than the strength of the interatomic molecular forces under normal conditions. For a thermal energy of a ligand at room temperature (kT  = 0.025 eV, T  = 298 K), and for a regular thermal stress of molecular bonds of ~ 0.05 nm, the mean thermal force acting on the LABS stays for 1.2 × 10 −12 N. In principle, a force above ~ 10 × 10 −12 N acting coherently on the whole set of mechanosensors on a cell should activate signal transduction in tumour cells. Consequently, ignoring any thermal and mechanical stressing in the ECM normal conditions, integrin activation via electrical polar interactions between LABS and NPs has the potency to start signal transduction in cancer cells and to initiate tumorigenesis.

Integrin Structure and Geometry

An integrin receptor in the upright conformation state extends ∼ 20 nm upwards from the cell membrane [42] (Fig. 10a). For no contacts between the two α- and β-subunits, other than those in the headpiece near the ligand-binding pocket, the α- and β-subunits are well separated with their cytoplasmic tails extended out up to ∼ 8 nm [42]. A conic projection geometry (20 nm slant height, 5–10 nm diameter of its circular base), bounded by the α- and β-subunits, defines a projected area on the surface of cell’s membrane between ~ 19 and ~ 80 nm 2 , for a typical mean radius of a tumour cell R c  ≈ 5 μm (equivalent surface area of a spherical cell \( {S}_c=4\pi {R}_c^2=3.14\ \mathrm{x}\ {10}^8\ {\mathrm{nm}}^2 \)). By dividing the area S c of a spherical tumour cell surface with the projected area of an integrin on a cell surface, an upper limit of the number of integrin receptors for these projected areas was n int  = 1.6 x 10 7 and 3.9 × 10 6 respectively. These numbers are compared with the mean number of integrins on a cell \( {\overline{N}}_{int}\approx 2\ \mathrm{x}\ {10}^5 \) and for an average interspacing of 45 nm between adjacent integrin receptors [43]. Nevertheless, \( {\overline{N}}_{int} \) might be larger because of an uneven surface structure, different separating distances between integrins and variable size of tumour cells (Fig. 9c), but the number of integrins on a cell membrane stand between n int and \( {\overline{N}}_{int} \).

Interaction of Mechanosensors with RE-NPs

ERK ½ and AKT Activation

The TEM images and the elemental mapping of F, La and Pr showed that RE-NPs were unable to penetrate inside the cell. They gathered around the A549 cell membrane (Fig. 11), confirming that an external force can stimulate cell growth because of TSRs activation [44]. The Pr atoms were distributed around the boundaries of the cell’s membrane. The small numbers of F, La and Pr identifications inside the cell were not associated with endocytosis of RE-NPs, but they were images of RE-NPs from the projections of the two cells hemispheres on cell’s equatorial cycle.

TEM images and elemental analysis of RE-NPs at the surface boundaries of A549 cells. a TEM image of small size LaF3 NPs surrounding the A549 cells. b Elemental analysis of F atoms in RE-NPs distributed around the cell. c Elemental analysis of La atoms. The low concentration of La atoms was associated with a rather small scattering efficiency of the X-rays. df The same as for (ac ) for PrF3 RE-NPs

It was also evident that both RE-NPs were able to enhance AKT phosphorylation, especially in A549 cells (Fig. 9d), where the steady-state level of AKT pathway activity was higher for the SW837 cell line. The phosphorylation level for the MCF7 cell line was below the detection limit, in agreement with the relatively low levels of growth. High phosphorylation levels of ERK1/2 [36] and AKT were detected in A549 and SW837 cell lines. Cell growth was started once NPs with a proper size interact with the mechanosensors of the cells to provide the correct force for initiating cell growth [45, 46]. ERK and AKT pathways were frequently active in several cancer cell types via extracellular springing, as they were stimulated by the TSRs, upon a selective binding with various mitogenic ligands, or via the activation of the mechanosensory group. The interaction was responsible for a continuous intracellular stimulation that, according to the cell’s phenotype, driven the cancer cells to uncontrolled and endless growth. Viability tests were also run for 48 and 72 h, but the growth of all cell lines was saturated at 48 and 72 h after the initial moment of Cell plating.

Interaction of Cells with Ions

Likewise, as fluoride anions are the most reactive electronegative elements and, the mean radii extension of the unscreened 4f electronic configuration of La and Pr trivalent ions are relatively large, high electric surface charges could be developed via electric dipole interactions [47].

One crucial question stands whether a single ion binding on a specific site can activate tumour cell growth. Because the projected area of the 4f electronic configuration of a single RE ion is S 4f  = 0.040 and 0.043 nm 2 (for an approximated spherical geometry of the 4f electronic configuration and a 4f mean orbital radii ~ r 4f =0.113 and 0.117 nm for Pr and La ions, respectively), a typical upper limit number of single RE ions, or other equivalent size ions, over the whole area of the cell membrane was ~ Sc / S 4f  = N 4f ~7.9 × 10 9 RE ions; a number which is at least two orders of magnitude above the upper limit of the mean number of integrins on a tumour cell. As the relative overgrowth of cells was ascending with rising concentration (Fig. 9a), it is unlikely that tumour cell growth is triggered by a specific binding of single trivalent RE ions [48] on the ligand sites [49,50,51]. Indeed, the large number of RE ions should have saturated the cell’s growth and thus the viability of cells should have remain independent from the concentration of the RE ions.

Interaction of Integrins with RE-NPs

Within the requisite force range of few pN, and for efficient activation of integrins from NPs, the interaction between NPs and LABS should activate a large fraction of integrins of the cell for a long time. In the most extreme favoured case for cell growth, the number of NPs had to remain equal with the number of integrins on the cell’s surface, and the interactive force between LABS and NPs has to be attractive for obtaining a constant (long-term) action. A thin spherical shell of spherical NPs surrounding a tumour cell occupied a volume\( {V}_{sc}\approx 4\uppi {R}_c^2x \), where R c  = 5 μm is the cell radius and x  ≈ 20 nm is half the separating distance between adjacent integrin receptors and V sc  ≈ 6.3 x 10 9 nm 3 . For justifying the requirement that each integrin receptor interacts only with one NP, a first estimation of the size of NPs to meet the above requirements for the whole set of integrins on a cell is obtained by dividing the volume of the spherical shell V sc with the number of integrins. A simple calculation for a cell radius 5 μm shows that the limits of radii of NPs activating the whole set of integrins within the spherical shell volume V sc  ≈ 6.3 x 10 9 nm 3 covering the cell is obtained by divided the volume V sc with the number of integrins \( {\overline{N}}_{int}\approx 2\ \mathrm{x}\ {10}^5 \) and n int  ≈ 1.6 x 10 7 . The volume of the spherical NPs stands for 3.15 × 10 4 and 3.93 × 10 2 nm 3 respectively. Therefore, the radii of the NPs interacting with an integrin lay between ~ 20 and 5 nm. Allowing for one order of magnitude variations in the number of integrins \( {\overline{N}}_{int} \), the radii of the NPs interacting with integrins is between ~ 27 and ~  3 nm respectively.

By also applying similar simple calculations and within the experimental limits of concentration levels of RE-NPs (0.1–10 kg m −3 ), the maximum numbers of PrF3 with MHR 55–83 nm and LaF3 with MHR 296–100 nm NPs (Fig. 1g, h) covering the surface of a tumour cell V sc stood for 4.1 × 10 4 –2.1 × 10 4 and 17.1 × 10 2 –1.5 × 10 4 NP. These values are placed well below the number of integrins on the cell surface. For rising concentrations of PrF3 and LaF3 from 0.1 and 10 kg m −3 , the number of PrF3 and LaF3 NPs in the suspensions must go up for either descending or ascending size of NPs. As viabilities of cancer cells are raised at higher concentration levels, it is unlikely that 55–296 nm sized RE-NPs are responsible for cancer cell mitosis under the current experimental configuration.

Also, from the DLS data, the size of both RE-NPs between 10 and 20 nm remained constant (10.6 nm) at different RE concentrations. The number of RE-NPs with this size covering the cell surface is between 3.7 × 10 5 and 1.5 × 10 6 . This number is comparable with the mean number of integrins \( {\overline{N}}_{int}\approx 2\ \mathrm{x}\ {10}^5 \) on a cell surface. Therefore, only small size RE-NPs have the potency to stimulate cancer cell growth by stimulating all the integrins on a cell surface, in agreement with the experimental observations (Figs. 1g, h and 9a).

The number of tiny sizes RE-NPs with MEAC diameter (TEM) from 2 to 10 and 10 to 15 nm on the cell surface (S c  = 314 μm 2 ) stands for 1.3 × 10 4 and 1.8 × 10 4 RE-NPs, respectively. Those values stayed one order of magnitude below \( {\overline{N}}_{int}\approx 2\ \mathrm{x}\ {10}^5 \) and therefore tiny size RE-NPs had also the potency to justify the experimental results of rising viability values with concentration (Fig. 9a). Also, the rough surface of tumour cell (Fig. 9c) is able to form cavities, where small size RE-NPs are trapped, triggering thus cell’s mechanosensors. Most important, only tiny size RE-NPs have the potency to activate integrin receptors via electrical dipole interactions (vide infra).

Interaction of EGFR with RE-NPs

An upper limit of small size NPs capable of stimulating cell’s overgrowth via the EGFR was set previously to 14 nm [52], but a realistic size of NPs stimulating the EGFR should be < 5 nm [53] (Fig. 12). The area number density of EGFR on the surface of tumour cells stands for ~ 1.4 × 10 −4 nm −2 and the total number of EGFR on the surface S c of cells remains between ~ 4.2 x 10 4 and 10 5 [54,55,56]. RE-NPs with 5–10 nm size stayed for a number of 34 NPs (Fig. 3). Extrapolating this number to the surface of a cell S c , the total number of RE-NPs remained at ~ 10 4 NPs, a number which matches the number of EGFR receptors on a A549 cell. Therefore, the EGFR have the potency to be activated synergistically also by a number of tiny size RE-NPs.

AKT and ERK1/2 signal transduction pathways activated by RE-NPs via EGFR stimulation. EGFR is activated only by tiny size ~ 5 nm NPs

Electric Dipole Interaction Between RE-NPs and LABS

The above experimental results are supported by the hypothesis of cancer cell growth from LABS stimulation by tiny size core-shell RE-NPs via electrical dipole interactions, Appendix.

Indeed, the mean electrical dipole force \( \left\langle {\overrightarrow{F}}_{V_2}\right\rangle \)acting on LABS from a core-shell RE-NP includes two terms (Fig. 13d and Appendix, Eq. A22). The first radial term is inversely proportional to the forth power of separating distance r 1 between the RE-NPs and LABS and is also proportional to the size of NP. The second polar term is inversely proportional to both the separating distance r 1 and the square power of the size of NP,

$$ \left\langle {\overrightarrow{F}}_{V_2}\right\rangle =-\frac{G_1{N}_2{N}_1\ d{e}^2}{4{\varepsilon}_0\ {r}_1\ }\theta \left(\ 3G\frac{b}{r_1^3}{\widehat{r}}_1+\frac{\theta }{2{b}^2}{\widehat{\theta}}_1\right)\kern0.75em (1) $$

a Electrical dipole interaction between one core-shell RE-NP and one LABS. b , c RE core-shell NP near a MIDAS (b ) and ADMIDAS (c ) adhesion sites. d Locus area (green) of the size of RE-NPs and separating distance between a LABS and a core-shell RE-NP for two electrical charging states

Dalam Persamaan. 1, G and G 1 are the geometrical factors of NPs, describing either core-shell or core spherical structures, Appendix, Eqs. A6 and A14; T 1 , T 2 are the numbers of surface electrons on the a RE-NPs and LABS surfaces; d dan b are the effective characteristic spatial extension of atomic orbitals of LABS, ~ 0.1 nm, and the radius of RE-NP; e and ε 0 are the electron charge and the vacuum permittivity and \( \theta =\frac{d}{r_1}<0.01\ rad \). Because the core of the RE-NPs is a crystalline semiconductive material, an inherent large number of surface and volume defective sites were accountable for a high density of pseudo-electron energy levels that allowed the electrons to move freely within the core volume [46]. Consequently, a core-shell structure had the potency to be highly polarised. Therefore, LABS can be activated efficiently by core-shell RE-NPs via electrical dipole interactions at close separating distances. The high polarised efficiency of the core nucleus was confirmed experimentally via the selective orientation of NPs along two distinct directions (Fig. 2(a4–d4) and Fig. 3(a4, b4)).

The polar interaction force is also proportional to the geometrical factor G 1 , Appendix, Eq. A14. Typical values of dielectric constants of the culture media, shell configuration and RE core components stand for ε 1  = 78, ε 2  = 10 and ε 3  = 15. When the ratio of core-shell to core radii b/a sets within 1 and 50, the geometrical factors G , G 1 retain almost constant values (G  = 0.2, G 1  = 0.01) and they are self-same for both a spherical core (b/a  = 1) and a spherical core-shell. Any permanent or induced polarisation of an open or closed a-I-MIDAS domain forming the LABS domain has its origin on six coordinated water oxygen atomic orbitals with Mn 2+ or Mg 2+ ions, arranged in a spherical geometric configuration [7] (Fig. 12a–c).

As the electrical dipole force in Eq. 1 stands for the vector sum of a radial (first term) and a polar component (second term), the last term prevails over the first one provided that

$$ {r}_1>\sqrt[3]{6G}b\sim b\kern0.75em (2) $$

In this case, a LABS is activated from the polar force component for all (b/a) ratios and, most important this term is inversely proportional to the second power of the size of NPs, in agreement with the experimental results that only tiny or small size LaF3 NPs activated cancer cell proliferation.

The prevailed polar force term for different r 1 dan b values and for different Ν 1 , Ν 2 charging states activating the LABS/MIDAS stay within the limits [57,58,59,60].

$$ {10}^{-12}N<\frac{G_1{N}_2{N}_1\ d{e}^2}{8{\varepsilon}_0\ {r}_1{b}^2\ }{\theta}^2<{10}^{-9}N\kern1em (3) $$

Inequality 3 relates the size b of the RE core-shell NPs, the separating distance r 1 and the number of the bound or free electrons Ν 2 , Ν 1 on the surface of the two dipoles. The locus of points (r 1 , b ) satisfying the inequality 3 for different surface charge states Ν 1 , Ν 2 is bounded by the black, red and blue lines (Fig. 13c). As there was no specific assumptions for the type of RE-NP, results can be equally applied for any type of polarised NPs.

When the algebraic product of the number of the surface electrons N 1 and N 2 (bound or free) on the LABS and the RE-NP, respectively, was N 1 T 2  = 2, the locus of RE-NPs size and separating distance for integrin activation was < 1 nm. At higher charging states, N 1 T 2 = 10 4 , the locus area spans a wider RE-NPs size and separating distance area set of values, from 0.5 nm–19 nm to 2.5–15 nm, respectively.

From the above analysis, it is found that only tiny or small size NPs can activate LABS at a certain separating distance r 1 and the electrical dipole interaction strength decays inversely proportional to the second power of the size of NPs. From Fig. 13c and for a charging state with N 1 T 2  = 5 x 10 4 , the size of NPs capable to activate LABS is bounded by the limits

$$ 2.5\ \mathrm{nm} Most important, from Fig. 13c, both the locus area (green area) and the size of RE-NPs increase for higher electrical charging states.

Conclusions

Cancer is a complex disease. Tumours are highly heterogeneous, and cell growth, among other factors, depends on dynamical interactions between cells and the continually changing extracellular matrix. Besides random genomic mutations, signal transductions in cells, activating cell growth can be triggered by mechanical, thermodynamic and electrical polar interactions between the microenvironment of the extracellular cell matrix and the membrane’s mechanosensors. Here, we demonstrated that tumour cell proliferation in three different human cancer cell lines (A549, SW837, MCF7) had the potency to be activated by a synchronised and synergetic activation of EGFR or via electrical dipole interactions between tiny size RE-NPs and the LABS of integrins on a cell.

Because the prerequisite force for integrin activation should stand between 10 −12 and 10 −9 N, the size of the active RE-NPs causing cell growth should be within certain limits. Cancer activation is specified by both the electrical surface charges on the LABS and the NPs and by their separating distance. This electric dipole activating force follows an inversely proportional square power law of the radius of NPs, evidencing that only tiny or small size RE-NPs have the potency to stimulate cancer cell growth via electrical dipole interactions, in agreement with the experimental results.

Methods

Synthesis of RE-NPs

PrF3 NPs were synthesised via co-precipitation. Briefly, 4 g of Pr2 O3 were added to 110 mL of 10% nitric acid in a polypropylene glass beaker together with 3 g of NaF under stirring. The mixture was heated to 50 °С and stirred for 45 min until a clear light-green solution appeared. Then it was filtered. The pH of the mixture adjusted to 4 by adding 25% of ammonium hydrate. Next, the mixture was stirred again for 20 min. Finally, the precipitated NPs washed with distilled water by centrifugation.

LaF3 NPs were also synthesised by applying the same protocol in a mixture of La2 O3 (4 g) and NaF (3 g). From both preparations, an aliquot of the suspensions containing NPs was air-dried for structural analysis and the remaining part kept as water suspension for the biological studies.

The suspensions of NPs were prepared in complete DMEM+FBS cell culture medium by adding water suspended NPs directly to the medium to a final concentration of 5 mM. Then, starting from the 5 mM stock solution, some subsequent dilutions using DMEM as a solvent were prepared to a final NPs concentration of 1 mM and 0.5 mM, respectively.

Size Distribution of RE-NPs

XRD

The crystal structure and the size of PrF3 and LaF3 NPs were characterised by XRD spectroscopy, with an X-ray diffractometer (Shimadzu XRD-7000S) in the 2θ range from 10° to 80° using the graphite monochromatised Cu-Ka radiation (1.5406 Å). The weighted average of τ for all peaks was used in the statistics. Weighting, besides β, took into account the relative intensity of every peak of the XRD spectra. The corresponding errors incorporate the reading error (0.3 mrad) and the standard error of the mean (se = σ / √ Ν ).

DLS

The size distribution and the MHR of RE-NPs in water and DMEM+FBS suspension were determined for comparison by DLS at 632.8 nm and right angles at 37 °C with a multi-angle dynamic and static light scattering instrument (PHOTOCOR-FC). The values of the MHR (Stokes radius) and the size distribution of NPs were calculated from the autocorrelation spectra and the Stokes-Einstein relation with the DynaLS software. Because the intensity of scattered light in pure DMEM+FBS was 20 times lower than with RE-NPs additives, the level of aggregating proteins in pure DMEM+FBS was negligible compared with mixed suspensions of RE-NPs in DMEM+FBS medium. MHR and RE-NPs size distribution and size errors were obtained by fitting and processing the data from the DLS instrument with the DynaLS software that allows the MHR to be calculated in different spectral domains of the main size distributions, from 10–10 2 to 10 2 –10 3 nm, Additional file 2.

AFM

Because size distribution below 15 nm was close to the low limit range of DLS, AFM was also applied to evaluate small size distribution. At low concentration of RE-NPs in liquid suspensions and slow drying rates of droplets on glass substrates, the deposits reflected the size distribution in the liquid suspensions [37]. Following the dispersion of RE-NPs in ethanol or DMEM+FBS, a drop of suspension was placed on a clean glass substrate using a micropipette, and then it was dried in air at room temperature for AFM imaging and analysis (diInnova, Bruker). AFM was performed in the tapping mode, in ambient conditions with a phosphorus-(n)-doped silicon cantilever (Bruker, RTESPA-CP), having a nominal spring constant of 40 nN/nm and operating at a resonance frequency of 300 kHz. Surface areas of various sizes (0.5 × 0.5–50 × 50 μm 2 ) were imaged with high spatial resolution (512 px × 512 px) at a scanning rate of 0.2 Hz to identify domains with different size distributions via “scan area filtering” [37]. From the morphological analysis by the SPM LabAnalysis V7 software, the particle’s size distribution, shape and aggregation stage were determined.

The size of NPs for different scanning areas was also noticeable by the particle analysis chromatic bar (Fiji integrated ROI colour coder based on MEAC diameter) (Fig. 2(a1–d1)). The AFM image was transformed into a binary image using an appropriate z -height threshold. Every pixel of the processed image contained information not only for the z -height in the pixel area but also for the presence of particles in the pixel area. x -histograms of MEAC and Ferret diameter (Fig. 2(a2–d2, a3–d3)) were extracted by using the “Image J 1.51n Fiji distribution software”, with the correct z -height threshold values. The size resolution per pixel was 3.9 and 1.9 nm for PrF3 and LaF3 respectively.

The particle identification, the noise extraction and the particle area data were processed by the “Particle Analyser function” of Fiji software (Fig. 2(a1–d1)). The particle diameter histograms were also analysed. Both the equal area circle diameter (Fig. 2(a2–d2)) and Feret diameter or “calliper diameter” (maximum diameter of a particle among all directions) (Fig. 2(a3–d3)), whose direction was the Feret angle (Fig. 2(a4–d4)), were analysed. The mean equal area circle diameter and the mean Feret diameter were calculated taking into account all particles identified. The associated errors incorporated the actual pixel size in every AFM image and the standard error of the mean (se = σ / √ Ν ).

A t test was performed for every set of AFM images based in the “null hypothesis” that the mean particle diameter was the same for all the AFM images between randomly selected figures (Fig. 2(a1–b1, c1, d1)). p value (probability that the null hypothesis based on t distribution is not valid) is shown in Additional file 2.

TEM

The same technique was followed for calculating the above parameters in TEM imaging (Fig. 3(a1–b4)). Atomic resolution TEM (Hitachi HT7700 Exalens) imaged either extracellular or intracellular RE-NPs attachment on the A549 cells fixed in glutaraldehyde. Elemental analysis of F, La and Pr were also carried out (Oxford Instruments X-Max 80T).

2D-FFT

Additional information on the NPs size distribution in the (x , y ) plane was also extracted from the 2-D Fourier transform of AFM images of NPs using the relation

$$ I\left({k}_x,{k}_y\ \right)=\iint f\left(x,y\right)\exp \left(i{k}_xx\right)\exp \left(i{k}_yy\right) dxdy $$

dimana f (x , y ) is a size function at a point (x, y ), k x , k y are the associated wavevectors in the inverse Eukledian space at the same point and I (k x , k y ) is the “spectral density” of the function f (x , y ) at the point k x , k y . For most applications, f (x , y ) is the z -height of the NPs at the point (x, y ) dan z  = f (x , y ).

For a set of discrete data, such as the digitised AFM images, the 2D-FFT was used instead of 2D Fourier transform in the continuous space. For a m  × n  X-matrix (pixels of an AFM image), the 2D-FFT transform takes the form

$$ \kern1em {Y}_{p+1,q+1}=\sum \limits_{j=0}^{m-1}\sum \limits_{k=0}^{n-1}{\omega}_m^{jp}{\omega}_n^{kq}{X}_{j+1,k+1\kern1.25em } $$

where \( {\omega}_m^{jp}={e}^{2 pi/m},{\omega}_n^{kq}={e}^{2 pi/n} \) are the associated frequencies. Then, an appropriate shift along the y -axis was performed and the integers m, n, p, q, k were translated into lengths and inverse lengths respectively by a multiplication with the pixel’s size of the image.

Water Trapping in RE-NPs

VUV Spectroscopy

To appraise the state of water in RE-NP’s complexes during the initial stage of suspension preparation, the adsorption of water molecules on the surface of the hygroscopic PrF3 NPs was identified with a laboratory-made VUV (110–180 nm) absorption spectrometer. It consists of a hydrogen lamp operating in a longitudinal stabilised discharge mode at 10 kV, a stainless steel vacuum chamber and a VUV monochromator (Acton VM502), equipped with a solar blind photomultiplier (Thorn EMI 9412 CsTe) and a laboratory-made data collection system. Thin layers of PrF3 NPs suspensions in water were prepared and dried on 1-mm-thick VUV-grade CaF2 substrates by applying the “drop-casting method”. Then, the CaF2 substrates were placed in the optical path between the hydrogen lamp and the VUV monochromator in a vacuum. The stainless steel 316 vacuum chamber was evacuated initially to 10 − 7 mbar using two turbomolecular pumps at a differential pumping configuration (Edwards EXT 100/200, pumping speed 150 ls −1 ). However, a high outgassing rate of PrF3 sets an upper limit to the background pressure in the vacuum chamber ~ 8.5 × 10 −5 mbar. The relatively low background pressure of both compounds irreversibly damages the VUV optics and the turbomolecular pump after few hours of operation and therefore it sets certain experimental constraints, preventing an equivalent registration of LaF3 spectrum because of high outgassing rates and a low background operating pressure (< 10 −4 mbar). The experimental data (light transmitted through the sample film on CaF2 window) were fitted to a logarithmic response for calculating the transmittance.

Cell Culture and Growth Assay

Cell Growth

The A549 and SW837 cell lines were maintained in DMEM+FBS, whereas the MCF7 lines were in RPMI+FBS. Both media supplemented with 10% fetal bovine serum (FBS), 1 × penicillin, 1 × streptomycin and 2 mM l-glutamine. Cells were incubated at 37 °C, 5% CO2 in a humidified atmosphere.

The WST viability test was used to monitor the intrinsic toxicity of PrF3 and LaF3 NPs for three human cancer cell lines, A549, SW837 and MCF7. For the viability assay, three different concentrations of RE solubles (0.5, 1 and 5 mM) in DMEM+FBS (A549, SW837) and RPMI+FBS (MCF7) were used. The initial number of cells seeded in the 96-well plates was ~ 5 × 10 4 sel / sumur. This amount of cells was plated 24 h prior to the RE-NPs treatment of cells in order to allow enough time for the cells to attach properly to the plate (wells) and to attain the optimum growing conditions. Subsequently, the viability test was performed 24 h after RE-NPs addition, or 48 h after the initial cell cultures were placed in the wells. As we did not observe any cell reduction, but on the contrary cell-overgrowth, especially with the SW620 cell line at 5 mM, the cell confluence quickly reached 80–90% of its initial value after 24 h of the addition of RE-NPs or 48 h from the initial plating.

Five microliters of WST solution was added to each well and the plate was incubated for 1 h during the growth state. The absorbance at 450 nm of each well was measured using a microplate reader (Biorad, x Mark). Each experimental point for each cell line and each RE suspension was extracted from two samples and triplicated every 2 days (total of 108 samples).

B test was used for every set of cell viability measurements. Here, the “null hypothesis” was that the relative to the CTRL “mean viability value was the same at different concentrations within the same cell line”. With this null hypothesis, an unknown law connecting tumour cell viability and RE-NPs concentration was identified. p value (probability the null hypothesis to be rejected) was also tested from the F distribution Additional file 1.

Western Blotting and Antibodies

Total proteins were extracted with 60 μL of radioimmunoprecipitation assay (RIPA) lysis buffer (20 mM Tris-HCl (pH 7.5); 150 mM NaCl, 1 mM Na2 EDTA; 1 mM EGTA; 1% NP-40; 1% sodium deoxycholate; 2.5 mM sodium pyrophosphate; supplemented with proteases inhibitors 1 mM β-glycerophosphate; 1 mM Na3 VO4 1 μg/ml; leupeptin) and the Wb assay was performed according to standard protocols (Fig. 9b). Briefly, total proteins (50 μg) were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose membrane. Blots were incubated overnight at 4 °C with appropriate primary antibodies. The antibodies used were tubulin code sc-8035, from Santa Cruz (final concentration 1:1000 in blocking buffer); p-ERK (E-4) code sc-7383, from Santa Cruz (final concentration 1:500 in blocking buffer); and p-AKT (Thr308) code 9275S, from Cell Signaling (final concentration 1:1000 in blocking buffer).

Wb bands are collected from different blots showing quality control of antibodies specificity. Numbers at the top of the phosphorylation images show grey scale levels from 0 (black) to 168 (grey) (maximum value ), indicating activation at a non-saturated mode.

Singkatan

2D-FFT:

Two-dimensional fast Fourier transform

ADMIDAS:

Adjacent MIDAS

AFM:

Mikroskop kekuatan atom

AKT:

Protein kinase B

CTRL:

Control cells

DLS:

Hamburan cahaya dinamis

DMEM:

Dulbecco’s modified Eagle’s medium

ECM:

Cell-extracellular matrix

EGFR:

Epidermal growth factor receptors

ERK:

Extracellular signal-regulated kinase

F.A.:

Feret angle

F.D.:

Feret area diameters

FBS:

Serum janin sapi

LABS:

Ligand adhesion binding site

MEAC:

Mean equal area circle

MHR:

Mean hydrodynamic radius

MIDAS:

Metal ion-dependent adhesion sites

NGFR:

Nerve growth factor receptor

NP:

Partikel nano

RE-NPs:

Rare-earth nanoparticles

RIPA:

Radioimmunoprecipitation assay

RMS:

Akar rata-rata kuadrat

RPMI:

Roswell Park Memorial Institute medium

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SyMBS:

Synergistic metal ion binding sites

TEM:

Mikroskop elektron transmisi

TSR:

Transmembrane signal receptors

VEGFR:

Vascular endothelial growth factor

VUV:

Vacuum ultraviolet

Wb:

Western blot assays

WST:

Water-soluble tetrazolium salts

XRD:

difraksi sinar-X


bahan nano

  1. Tentang nanopartikel semi konduktor
  2. Biokompatibel FePO4 Nanopartikel:Pengiriman Obat, Stabilisasi RNA, dan Aktivitas Fungsional
  3. Studi In Vitro Pengaruh Nanopartikel Au pada Garis Sel HT29 dan SPEV
  4. Modified Hyperbranched Polyglycerol sebagai Dispersant untuk Kontrol Ukuran dan Stabilisasi Nanopartikel Emas dalam Hidrokarbon
  5. Promosi Pertumbuhan Sel SH-SY5Y oleh Nanopartikel Emas Dimodifikasi dengan 6-Mercaptopurine dan Neuron-Penetrating Peptide
  6. Maghemite Nanoparticles Bertindak sebagai Nanozymes, Meningkatkan Pertumbuhan dan Toleransi Stres Abiotik di Brassica napus
  7. Near Infrared-Emitting Cr3+/Eu3+ Co-doped Zinc Gallogermanate Persistence Luminescent Nanopartikel untuk Pencitraan Sel
  8. Nanokomposit Berbasis Grafena Oksida Dihiasi dengan Nanopartikel Perak sebagai Agen Antibakteri
  9. Nanopartikel emas bentuk bulat:pengaruh ukuran partikel dan konsentrasi pada pertumbuhan akar Arabidopsis thaliana
  10. Sintesis Bimetal Tungsten-Tembaga Nanopartikel Bimetal melalui Plasma Termal Frekuensi Radio (RF) Reaktif